A folk theorem revisited: Degenerate representations
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It is known that when bases for generic irreducible representations of a semisimple group are
reduced according to a semisimple subgroup the number of functionally independent missing
label operators is just twice the number of missing labels. It is shown that the relation
continues to hold when degenerate irreducible representations are considered.

I. INTRODUCTION

When a Lie group is applied to a physical problem, one
often needs basis states of irreducible representations (IR’s)
of the group reduced according to IR’s of a subgroup. Often
the subgroup does not provide enough labels to specify the
basis states completely.

One solution to this difficulty is to use the common ei-
genstates of a complete set of commuting operators as bases.
Besides the Casimir invariants of group and subgroup, an
appropriate number of “missing label” operators must be
found; they should be subgroup invariants that are functions
of the group generators.

Peccia and Sharp' showed that for generic IR’s the
number of missing label operators is exactly twice the num-
ber of missing labels; we follow Gilmore and Draayer” in
referring to this result as the missing label folk theorem. Lat-
er Giroux, Couture, and Sharp® considered a number of spe-
cific examples dealing with degenerate representations (i.e.,
representations for which one or more Dynkin labels van-
ish). In each case the number of missing label operators was
twice the number of missing labels. They conjectured that
the folk theorem holds for degenerate, as well as for generic,
IR’s, but could not provide a proof. Such a proof, valid for
semisimple groups, is the content of the present paper; it is a
straightforward generalization of the proof given in Ref. 1
for generic IR’s.

Gilmore and Draayer,” in a recent publication, have ex-
pressed a contrary opinion: ...a directly applicable criterion
such as the missing label folk theorem would be useful
...(but) it fails for several applications considered above...we
cannot recommend it as a test for completeness of an integri-
ty basis.” Gilmore and Draayer do not say for which of their
applications the folk theorem fails; we have examined all the
applications in their paper and found that the conjecture is
valid for each case.

Il. COUNTING MISSING LABELS AND MISSING LABEL
OPERATORS

We consider a semisimple group G and a subgroup H.
For those degenerate IR’s of G for which specified Dynkin
labels vanish the number of internal labels is known to be*

%(rG—lG_rG'+lG'), (1)
where rand /! denote order and rank, respectively. Here G ' is

the subgroup of G whose Dynkin diagram is obtained from
that of G by retaining the nodes (and lines connecting
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them), corresponding to the zero Dynkin labels; it is the
subgroup whose negative root generators annihilate highest
weight states of the degenerate representations under consi-
deration. To count missing labels we subtract the number of
labels, Dynkin and internal, provided by H; that number is

Yoy +ilg—rg —1g)—=1" (2)
It may happen that only degenerate representations of H
appear in the degenerate representations of G under consi-
deration; then H ' is the subgroup of H corresponding to its
zero Dynkin labels; /;; — /5. is the number of nonzero Dyn-

kin labels of H; /" is the number of G Casimirs which depend
only on H generators. Thus the number of missing labels is

n=re—Ils—re +lg —rg—Ily+ry +ig)+1"
(3)

Before counting missing label operators we must estab-
lish the number of functionally independent generators, or
equivalently, group parameters in the case of degenerate
IR’s. This can be done by reversing an old argument due to
Racah?; he reasoned that in the matrix elements (g|U [s) the
basis states |s) and |g) carry the same information as the
group transformation U, and therefore depend on r param-
eters. Since |s) and |¢) have the same values for the / Dynkin
labels, but different values of the internal labels, say x in
number, it follows that » =/ + 2x. In our degenerate case
the number of nonzero Dynkin labels is /; — /;. and the
number of  independent  internal labels is
(rg —lg —rg- +1s.). Thus the number of independent
generators is

lg =l +24(rg =g —reg +1ls)=rc —rg.. (4)
Similarly the number of independent H-generators is
Fy —Fye-

To determine the number of subgroup invariants, we
envisage determining them by means of a device used by
many authors,® i.e., solving a set of partial differential equa-
tions. The equations are those corresponding to the first
ry — rg. rows (ie, to the independent subgroup genera-
tors) of the degenerate commutator table. The method of
derivation shows that the number of subgroup scalars is
re¢ —rg- — R, where R is the rank of the first 7, — 7. rows
of the commutator table. Subtracting the number
lg =l + 1y — 1y — 1" of independent group/subgroup
Casimir invariants we find the number of available missing
label operators to be

m=rg—reg —R—Ig+1ls —Ilg+ig +1'. (5)
We want to show that m = 2n, i.e., that
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l’=rH—rHl—R. (6)

But (6) follows from the definition of /': group scalars which
depend only on subgroup generators are found by solving the
rg — rg differential equations corresponding to the first
ry — ry. columns of the commutator table; because of anti-
symmetry the rank of the first 75 — 75 columns is the same
as that of the first r, — 7. rows.

lil. EXAMPLES

We consider two examples, SU(6) DSO(3) for the de-
generate representations (4,0000) and (4,4,000). These
cases are considered in greater detail by Gilmore and
Draayer. Here we simply count missing labels and missing
label operators to check the validity of the folk theorem.

For (41,0000) IR’s there are* 15 — 10 = 5 internal la-
bels needed; since SU(2) provides two there are three miss-
ing labels. For (1,4,000) IR’s there are* 15 — 6 = 9 internal
labels needed and hence seven missing iabels.

Acting on degenerate IR’s of a group G, the number of
occurrences of an IR (4) in the enveloping algebra is,” mod-
ulo multiplying by Casimirs, equal to the multiplicity in (1)
of the scalar IR of the subgroup G'XU(1) X - XU(1),
where G’ is, as before, the subgroup corresponding to the
vanishing Dynkin labels and the /; — /. subgroups U(1)
span the directions of weight space orthogonal to G

For (4,0000) IR’s the multiplicity of scalar
SU(5)xU(1) IR’s in SU(6) IR’s is known from SU(6)
DSU(5) X U(1) branching rules to be given by the generat-
ing function

(=AM o))

Thls means that the multiplicity of SU(5) X U(1) scalars in
the IR (1) and therefore the muitiplicity of the IR (1) inthe
degenerate enveloping algebra is the coefficient of IT}_ , f’
in the expansion of (7), i.e., unity for (4 0004), zero other-
wise. Similarly, for (4,,4,,000) IR’s the multiplicity of sca-
larSU(4) XU (1) X U(1) IR’sin the SU(6) IR (A) is found
from known branching rules’” for SU(6)DSU(4)
X SU(2) XU(1). The result, which also gives the number of
(A) IR’s in the corresponding degenerate enveloping alge-
bra, is described by the generating function

[(1=AA)D(1 = AAD]!
X[(1~AA) T + AAN1 - AAD '] ()

To count SO(3) scalars in the enveloping algebra for
these two degenerate cases, it is convenient to count instead
SU(3) IR’s in the enveloping algebra, since each even—even
SU(3) IR contains just one SO(3) scalar. To get a generat-
ing function for SU(3) IR’s in the enveloping algebra, it is
necessary to “substitute”’ the SU(6) DSU(3) branching
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rules generating function into the generating function (7) or
(8). Since we care only about the number of SO(3) scalars,
we do not need the relevant generating functions, but only
the number of their denominator factors.

For the (4,0000) case we need branching rules for
(4 0004) IR’s of SU(6) to SU(3). That generating function
has 1+ 9 — 3 =7 denominator factors [one independent
SU(6) label, nine mtemal SU(6) labels, three internal
SU(3) labels]. Substituting thisinto Eq. (7) gives a generat-
ing function with 1 4 7 — 1 = 7 [1 and 7 are the numbers of
denominators in the two generating functions, 1 is the num-
ber of SU(6) Dynkin labels to be eliminated ]. Thus there are
seven independent SO(3) scalars, and since there is one
SO(3) Casimir, six nussmg label operators as required by
the folk theorem.

Similarly, for the (4,4,000) case we need branching
rules for SU(6) DSU(3) for the SU(6) IR’s in the generat-
ing function (8); those SU(6) IR’s have three independent
IR “labels (A;=0, A,+24,=24,+A5). Hence the
SU(6) DSU(3) generating function has 3+ 14 -3 =14
denominators [3 SU(6) labels, 14 internal SU(6) labels, 3
internal SU(3) labels]. Substituting this into (8) gives a
generating function with 4 4 14 — 3 = 15 denominators [4
and 14 are the numbers of denominators in the two generat-
ing functions, 3 is the number of SU(6) labels to be eliminat-
ed]. Thus there are 15 independent SO(3) scalars and, since
there is 1 SO(3) Casimir, 14 missing label operators, in
agreement with the folk theorem.

Many other examples are found in Ref. 3, which deals
with rank 2 groups and SU(4), and in Ref. 8, which deals
with SO(7) and Sp(6).
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Indices of representations of simple superalgebras
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Indices and anomaly numbers for representations of basic classical Lie superalgebras are
defined, and their explicit expressions are derived in terms of Kac-Dynkin labels. Useful
properties of indices and anomalies are determined, and several examples are given. A similar
analysis is made for superindices and superanomalies, and it is demonstrated how all these
objects form a helpful tool in decomposing tensor products or in constructing branching rules

for representations.

I. INTRODUCTION

The purpose of this paper is to extend the definition of
the index of degree n, of a representation, well known in the
case of semisimple Lie algebras, to representations of the
simple superalgebras. It turns out that virtually all the valu-
able properties, which made the indices of representations so
useful in computations, carry over to the new situation.

The index of degree 2 of a representation A of a semisim-
ple Lie algebra L over C was originally defined and used by
Dynkin' in classifying semisimple subalgebras of simple Lie
algebras. It has proven to be useful in other applications.”™
In 1976 Dynkin’s definition was reformulated and naturally
extended® to include indices of degree > 2. Subsequently,
their applications became widespread. Here we single out
only those papers where the indices (of any degree) are used
in a new way or in a new form. Let us also mention that
extensive tables of the values of indices are available*”?; in
addition, with the other information provided in Ref. 8, the
indices of any degree can easily be evaluated for all represen-
tations listed in that book.

In Ref. 9, indices were used to decompose plethysms. It
turned out that general expressions for indices of plethysms
could be found that are independent of the type of Lie alge-
bra or representation on which the plethysms are based. Ref-
erence 10 contains a definition of the “anomaly numbers,”
well known in physics in a completely different way, which
are so closely related to the indices of representations that it
is appropriate to include them as well in the general notation
of the index of a representation. The index of degree 2 is
naturally related to the eigenvalue of the Casimir operator of
the same degree. It is not so for higher indices as defined in
Refs. 6 and 10; these are polynomials in the Casimir opera-
tors. Since it is sometimes advantageous to use the indices in
conjunction with Casimir operators, a new definition of
them was given''""? and extended to some of the applica-
tions. Then the index of degree & is automatically O if the Lie
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algebra does not have a Casimir operator of that degree. The
anomaly cancellation conditions are naturally analyzed in
terms of the indices of representations. '

Finally let us mention that recently the indices of repre-
sentations were defined and their properties were described
for representations of the Kac-Moody algebras.'®

In the present paper we study indices and anomaly
numbers for representations of the basic classical Lie super-
algebras. The simple finite-dimensional Lie superalgebras
were classified by Kac,'® and some general theory of their
representations was published by the same author.'” The
main difference with Lie algebras is that in general Lie super-
algebras have so-called typical and atypical representations.
Typical representations are irreducible highest weight repre-
sentations, and their character y, is well known!’ in terms
of the highest weight A. If A is “in atypical position” the
corresponding irreducible highest weight module is atypical,
and Kac’s typical character formula'’ does not work. How-
ever, in that case the application of Kac’s formula yields the
character of an indecomposable representation. In this paper
we make use of Kac’s character formula in order to obtain an
explicit expression for the index and the anomaly number.
Hence, these expressions are valid for typical representa-
tions and for indecomposable representations, but not for
atypical representations.

The structure of the paper is as follows: in Secs. II-IV
we define indices and anomalies for representations of Lie
superalgebras, investigate their properties, and determine
their values. Section V contains some explicit examples. Su-
perindices and superanomalies are analyzed in Sec. VI. In
Sec. VII we demonstrate how the indices and anomalies are
useful in constructing branching rules or in decomposing the
tensor products of two representations. Finally, indices of
plethysms are considered in Sec. VIIL

il. INDICES AND ANOMALIES FOR TYPICAL
REPRESENTATIONS OF LIE SUPERALGEBRAS

For n an integer, we define the index of order 2n of a
representation with highest weight A of a Lie superalgebra L
as follows:

I3 = (44" (2.1)
A

where the summation is over all weights A (including multi-

© 1987 American Institute of Physics 1673



plicities) of the representation and ( , ) is someinner prod-
“uct on the weight space H *. In order to have useful proper-
ties for the indices of Lie superalgebras, we shall have to
make a special choice for this inner product. It is obvious
that the bilinear form (4, u) (4, ucH *) deduced from the
invariant bilinear form on the Cartan subalgebra H of L does
not satisfy our purposes. For instance, the existence of iso-
tropic vectors'’ A #0 with (1,4 } = Odestroys the geometri-
cal interpretation of indices and would make them useless
for branching rules to Lie subalgebras. There is, however, a
well-determined inner product ( , ) which satisfies all the
properties needed and which is defined as follows. Let Lg be
the even part of the Lie superalgebra L, then'®
L; =G,0G,8G,, (2.2)
where every G, is either a simple Lie algebra or the one-
dimensional Lie algebra u(1), or else G, = 0. The explicit
form of the simple components G, of L; will be givenin Secs.
I1I and IV. Note that G, = 0 except for the Lie superalge-
bras spl(m,n) and D(2,1;a), where spl(m,n);
=sl(m)eosl(n) ®u(l) and D2,l;a); =A4,04,04,.
The decomposition (2.2) implies also that H and H * can be
written

H=H,eH,0oH, H*=H*oHYoH?*  (2.3)
where H, is the Cartan subalgebra of G,,. Now, for every Lie
algebra G, the inner product ( , ), in the weight space H *
is well defined [ with the normalization (a,a), = 2 for a the
longest root of G, ]. Hence, we define, for A=A+ A4°

+Aandp =p® +p® + 4,

(A p)=@A%u, + A5uP), + (4545,  (24)
This inner product will be described explicitly for all basic
classical Lie superalgebras. The index can then be written as

IO =180+ I8P + 130, (2.3)

The properties of indices follow from the symmetry of
weight diagrams of Lie superalgebras, which in their turn are
derived from symmetries of weight diagrams of semisimple
(or reductive) Lie algebras.’ Let AcH *and A ¥ (i = 1,...,1,)
be the components of 4, in an orthonormal basis with re-
spectto ( , ),;thenthe weight systems of representations of
L satisfy

TAI=0 [for G,Au(D)], (2.6)

;A;‘A}"=O (for i#j). 2.7
This follows immediately from the fact that all weight sys-
tems of simple Lie algebras are rotationally symmetric to
second order.® For G, = u(1), (2.6) does not vanish, and
hence representations of the Lie superalgebras spl(m,n) and
C(n) have a nonvanishing first-order anomaly number de-
fined by

Ay=347 [G.=u(D)], (2.8)

A

where the summation is over all weights A of the representa-
tion with highest weight A, and 4 { is the component of A in
the u(1)-direction.
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The index has additivity. properties similar to those of
the dimension under reduction of a representation with
highest weight A into representations with highest weights u
of some subalgebra L '. The only difference is the appearance
of some coefficients p, depending upon the projection of H *
into H '* associated with the reduction L—L’,

L= 3 pd.

u . u = a,b,c -
The coefficients p, deperid upon L and L', but not on A.
Similarly, if the direct product of two representations (A,)
and (A,) with dimensions &, and N,, respectively, decom-
poses in representations with highest weight A, then

2.9)

SIP=NAL + NI + 24, 4s, (2.10)

Hl. THE INDEX FOR TYPE | LIE SUPERALGEBRAS

The type I Lie superalgebras are the series 4 (m,n) and
C(n). They are characterized by the fact that their Lie alge-
braic part contains a one-diménsional center, namely
A(m — 1, n — 1)5 = spl(m,n)5 = sl(m) @sl(n) ®u(1) (if
m#n) and C(n); =u(l)®C,_,. Let A, and A, be the
even and odd roots of L, and let a superscript * denote the
positive roots in each set. We denote the Weyl group of L by
W and the sign of weW by e(w). Then the character of a
typical representation of L with highest weight A is given
byl7 ’

with
B= T (¢#*72+e 80, (3.2)
BeAir
A= JI (7 —e ™" = 3 ew)e”™”?, (33)
aelgh we
fa= %e(w)e'"“‘*"""’. (34)
Here, p = p, — p,, where
1 1
Po=? Z a, pl=72 B' (3.5)
acAg” PeA it

In (3.2)-(3.4), we have introduced new formal variables
= (@@l @@ @1, ) Which keep track of
the components 4 ¥ of a weight A =A%+ 1%+ A4° in the
orthonormal basis, and 4 g stands for
'l‘
> Alel
u=abci=1

The character can also be written in the following form:

XA =;e’1"”. (3.6)
Then, it is clear that the second-order index is
@ @ @ & 9%
IP= Y I3, I =Yy —221 (3.7

u=a,b,c i=1 (a¢;‘)2 @=0
similarly we have dim(A) =N, = y4|,-0- From (3.1)
one deduces that
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@ :Z 3°B §_A
U 4 ((9¢7‘“)2 A

@=0

K (Q_)
- apr dpr \ A

=0
3?2 &
The first term reduces to
s L(pnp )B-’gi —N, S (8
Bea 4 ¢=0 BeA"
(3.9)

where ( £ %)= (8% B"%). The second term vanishes, and
the third term is equal to

2
dEa 1 J2A
Z @t |, G,

) £ 2 8 (é"_)
AT \NBTdpil, o
Making use of (3.3) and (3.4), one verifies that the first two
terms in this expression yield

Ny [(A“+p)? — (p5)?]- (3.11)
The last term in (3.10) is more elaborate to calculate. When
G, = u(1), this term clearly vanishes. For G, a simple Lie
algebra [ #u(1)], one can make use of properties of indices
of simple Lie algebras.® Then this term is equal to

— [(n, = 1)/n, [NA[(A“+p*)* — (p§)*]. (3.12)
Here, n, =dim(G,) and /, = rank G,. Hence, the final

form of the index of a highest weight representation (A) is
given by

(3.10)

I =Ny [i > (B)?
u = a,b,c 4 BGA]+
— (A" 4 p"2 — (,06‘)2]] (3.13)
e
Beay
+ 3 [(A“+p“>2-(p3>2]], (3.14)
u = a,b,c u

where 87 = (,3). Note that the final form (3.13) or (3.14)
includes the possibility G, =u(l), in which case n,
=l =1

For the first-order anomaly, defined in (2.8), one can
also derive a simple expression in terms of the highest weight
A. Let G, =u(1), and let 4 ¢ denote the component of a
weight A in the u(1)-direction. Then, using the same nota-
tion as before, one finds

Ay = (¥a) (3.15)

(9 ¢ ¢=0 ’
Making use of the explicit character formula given by (3.1),
we find

Ay =N, (A°+p°). (3.16)
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A. The index and anomaly for A(m-1,n1—1)=spl(m,n)
(msn)

The positive roots of spl(m,n) are given by!”

Ao+ = {6,- — € (1<1<]<m), 51 - 6j (1<1<]<n)},
3.17)
(3.18)

The even part of spl(m,n) issl(m) @sl(n) ®u(l). The Car-
tan subalgebra of sl(m) is spanned by €, —e,,....6,, _,
—€,,, or similarly by the dependent elements e,

A =A{e, — 6, (I<i<m, 1< j<n)}

(i=1,..,m) with 2" | ¢; = 0. The inner product ( , ), is
determined by

(Gi,é'j)a =(S,j —1/m. (319)
The same holds for sl(n),

(6,,6;), =6; — 1/n. (3.20)

Finally, one can verify that the basis vector in the u(1) direc-
tion is given by

1 /& 1 [
__ )= S, ]. 3.21
g m (ig1 6,) n (igl l) ( )
Let ucH *, say
p= Z M€ + Z Hom 1 i5; (3.22)

i=1 i=1

The p,’s are determined “up to a constant term” since

26—25——0

i=1 i=1

(3.23)

in H *. The Kac-Dynkin labels for & are equal to

=y —pu;., (=L.m—1m+1,..m+n),
A =y + M1+ (3.24)
Then we have
(1 1) =(2 Hi .,Z € )
) =
= z (/u, ,l.l.j (ly_]= 1,...,m),

i<j (3.25)

(#!ﬂ)b=7z(ﬂm+l /‘Lm+]’)2 (i,j=1,--.,n),

i<j

2
(up). —(n—— Zl - Zlﬂm,)-

Obviously, all values in (3.25) are invariant under replace-
ment of u by u + z(Ze¢; — 24;), zeC.
Using these properties, one obtains

> B =3mn—m—n. (3.26)

BeAt

Let A be the highest weight of a typical representation with
Kac-Dynkin labels (a,,...,a,, , , _; ). Wedefine new labels /;
by means of
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n—1 — :
lx' = (2 e — Zl am+!) +'m_—21'+_1—i (i=1,..,m),

=1

! n+1 .
lm+l _(z am+l)+w—j-_'—l (l—_"ls'--:n_ 1),

= 2
(3.27)
Lin _m—n+ 1 .
2
Then one finds

2 A

i<j=1

1
I =N {-— 3Imn—m—
A A 4( m-—n) 4+ ————— mom +l)

l
+n(n+ 1) [.qz;] Cnvs =

The dimension N, has been determined by Kac for all basic
classical Lie superalgebras.

Also for the anomaly number of a typical representation
of spl(m,n), one finds a simple expression,

Ay =N, ( 2 L + Z m+z) (3.30)

n—m ;=" n—m i=

B. Index and anomaly for C(n)=o08p(2,2n -2) (n>2)
The roots of C(n) are given by'’
Af =1{8,-6,6,+6,28} (I<i<j<n—1),
A ={e—6,6+6}. (3.31)

Clearly, € is the basis vector in the u(1)-direction. The inner
product on H * is determined by

(G,G)a =1, (5“6]‘)5 = ;5.] (332)
Then, we find that
S B2=3(n—1). (3.33)
BeA{*

For a typical highest weight representation (A) with Kac—
Dynkin labels (a,,...,a, ), we introduce the following labels
1

ll = al,

i =( S
=3

Consequently,

ak) 4+n—i (i=1,.,n—1). (3.34)

3 1
I, =N, {—(n-1 —_
A "[4(" ‘Y-

n—1

XE[11+z—(11+.)2]+(11+1—n)2]. (335)
i=1

Here, I{ are the labels /, with all 4,’s replaced by 0.
The anomaly number is determined by means of formu-
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1
,,.+,)2-En2(n+ D(n— 1)] +(

(Aa+Pa)2=“L 2 (li""lj)zp

i<j=1
AP +p"2 = S (Ui~ Iy ) (3.28)
” i<j=1
A +p° 2=( n_S ; ) .
( +p) n—m,-g’l n—m ,Z] m

Therefore, the index is given by

—T12—m2(m+ 1)(m — 1)]

S )]

(3.29)

n—m ;=1

la (3.16)

A, =N,(a;,—n+1). (3.36)

IV. THE INDEX FOR TYPE Il LIE SUPERALGEBRAS

The even subspaces of type II Lie superalgebras are
semisimple Lie algebras. The lack of a u(1) part makes the
situation slightly simpler. On the other hand, calculations
are now complicated by the fact that A + p is not always an
integral weight for the semisimple Lie algebra L. Let L;
= @, 4.0, then one finds that the index of a typical
highest weight representation (A) is given by

1Y = { 2/32+2 +p*)? — (pS)Z]],

4.1)
where /, =rank G,, n, =dim G,,and (1 *)>*= (1% 1%),
is the square length of the projection of A onto H *,
A. B(m,n)=o0sp(2m +1,2n) (m>0,n>0)

The roots of B(m,n) are given by

Ao+ = {8. - 61,81 + 6j,25,' (1<i<j<n);

Af = {51" - ej,Bi + ej,‘si}- (4.3)
Here, L = B,, ® C,, and hence the inner product on H * is
given by

(€,5€;) =6ij’ (61,5,') =0, (8i!8j) = i‘sg, (4.4)

for m> 1. When m = 1, the longest root of B, is €,, and we
have to choose a different normalization. It is easy to see that

D B*=3mn+in.

Beat
Let A be the highest weight of a typical irrep, characterized

(4.5)
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by the Kac-Dynkin labels (a,,...,a,, , ,). We define the la-
bels /; by means of

m -1 1 .
1,-=(Z>a,.+k)+?a,,+m +m—t+%

k

e (8e) (o)

1 , .
m?a"+m+n—z+1 (i=1,.,n). (4.6)

Then
(A +p = (p)?] = 3 [11—UD?],

i=1

[(A®+p")* — (p5)7]

1 i [(1 —m _i)z — (1.0)2],
2 . 1 2 1

i==1

(4.7)

where /7 is again [, with all labels a; =0. With /,/n,
=(2m+1)""and [,/n, = (2n + 1), we have every-
thing needed to calculate I {¥’ for B(m,n) by means of (4.1).

When m = 1, the choice of the linear product is differ-
ent, namely,

(ep6,) =2, (€,8,) =0, (5,8;) =15, (4.8)
and hence
s A=t (4.9)
pea
Using the same labels /; as in (4.6), we find now
[(A"+p)° — (p§)*] =2[17 — UD)?]. (4.10)

The other contributions in I {¥’ are the same as for m > 1.

B. B(0,n)=o0sp(1,2n) (n>0)

The even roots of B(0,n) are those of C,, and the odd
roots are given by

Ar =18} (i=1l..n). (4.11)
Since Ly = C,,, the inner product is
(6,,6;) = 16;. (4.12)
Then, one finds
2 1
= — . 4.13
S A= (4.13)

BeAt
Introducing the labels /, (i = 1,...,n) in terms of the Kac—
Dynkin labels (a,,...,a,, ) of an irrep with highest weight A by

n—1

1
[ = a, +—a, +n—i+1 (i=1,.,n), 4.14)
k; K (

one can verify that

I3 =Ny {"11;' n 2(2nl+ 1) ,-Z’l[(ii B "';")2 B (,?)2”_
(4.15)
C. Dim,n)=o0sp(2m.2n) (m>1)
The roots of D(m,n) can be given in the following form:
Asm =1{8, — 8,8, + 6,28, (1<i<j<n);

€ —€,€ +¢€ (I<i<j<m)}, (4.16)

1677 J. Math. Phys., Vol. 28, No. 8, August 1987

A ={6, —€.8, + €} (417
The inner product on the Cartan subalgebra of
L; =D, o C, is determined by

(€.€) =06, (€.€) =0, (5.5)=15,. (4.18)
1t follows that

z B?=3mn. (4.19)

Bed i+

For a typical irrep with highest weight A and corresponding
Kac-Dynkin labels (a,,....a,, , , ), we introduce the new la-
bels /;,

e 1 .
lzz(z an+k)+"2"(an+m~l+an+m)+m—l
k=1

(i=1,..m—1),
1, =

m _an+m—l+an+m)’

o (5e) (T

‘——';'(axwt»m—l +an+m)+n~i+l

(i=1,..,n).

Then, one has

(4.20)

[(A%+p7— (02)*] = 3 [12— (192,

HES
[(A* 409 — 08)°]
1 n
5 Z [Tnyi —m)* — (l?n-w')zl'

i=1

With [, /n, = 2m — 1) "' and I,/n, = (2n + 1) 7', these
values determine I 2 completely.
D.D(2,1;c)

The even positive roots of D(2,1;a) are given by
2¢; (i = 1,2,3), and the odd positive roots by'®

(4.21)

A = {51 — €, — €3,€; — €; + €3,€;

+ €, — €3,6, + €, + 6} (4.22)
The inner product on H * is determined by
(€,€) =16;. (4.23)
Hence
> B 2=6. (4.24)
Bea it

We introduce the labels /; for a highest weight irrep (A) in
terms of the Kac-Dynkin labels a; by

L=[l/1+a)](2a,—a,—aay), ,=a, L=a,

(4.25)
Then, one finds
IQP =N,-2(I3+13+13 =20, + 2, +21,+9).
(4.26)
E. G(3)
The roots of G(3) are expressed'” in terms of § and ¢,

(i =1,2,3) satisfying €, + €, + €; =0,
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A = ‘{€2,53 — €3,€3, — €1,€) — €,63 — 51;25}, (4.27)

F={6+€,6—¢,6} (i=123), (4.28)
and the inner product on H * reads '
(6’5) = ;, (536) =0, (ei,ej) = 51_, - ‘5 (4'29)

For a highest weight representation (A) with Kac-Dynkin
labels (a,- ), A = 115 + 1261 + 1362, Where

L=4(a,—2a,~-3a;), L=—a,—2a, L= —a,
(4.30)

Then, (4.1) gives rise to
IS\2)=NA{&1+%(I§_511)

F. F(4)
* The positive roots of F(4) are!”
A0+ = {e:] _ekrej +€ks€j!26} (1<]<k<3)’ (432)

A ={6+4(+ € +€ +6)} (independent + signs).
(4.33)

The inner product is determined by
(6’5) = i’ (6,61') = 0’ (6,-,61-) =6y~ (4-34)

Expressing the labels /; in terms of the Kac-Dynkin labels
(a;) for an irrep with highest weight

3
A=16+ z L€

i=1
one finds
1, =4(2a, — 3a, — 4a, — 2a,),

12 = a4 + a3 + ;az, 13 = a3 + iaz, 14 = iaz. (4-35)
Then, the index reads '

I? =N, {313 —6l) +3U5 + 5L,

+ 13 +3L+13 + 1) + ¥} (4.36)

V.EXAMPLES
A. A(1,0)=spl(2,1)

Let (a,,a,) be the Kac-Dynkin labels of a typical rep-

a a :

resentation of spl(2,1): c;____.gz . Then A= (q,

+ a,)€; + a6, and the u(1)-label of A is given by k
= — g, — 2a,. The corresponding sl(2) label isj = a,. Ap-
plying (3.29) one finds, with N, = 4(a, + 1), that

IP =4, + D{§+1a} +20)) + (a,+ 20, + D,
(5.1

or, expressed in the more conventional labels'® (k; j),

I =4+ D[P+ +k>~2k+]]. (52)

B. C(2)=08p(2,2)
For a representation with Kac-Dynkin labels
a, a,
® <=0,

the highest weight A is equal to a,€ + a,8,, or, more conve-
niently’® ke +j5,, where (k;j) = (a;;@,). Since N,
=4(j+ 1), (3.35) gives immediately
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IP=4G+ DA+ +k2—2k+]].  (53)
This is exactly the same expression as (5.2). Clearly, this
follows from the fact that osp(2,2) = spl(2,1). In this case,
also the expression (3.36) for the anomaly becomes very
simple,

Ay =4+ 1)(k—1). 54)
C. B(0,1)=o0sp(1,2)

Let s = 2a be twice the Kac-Dynkin label. Then s is
always an integer, and since N, = 25 + 1, (4.15) implies

I =is(s+ 1)(2s+1). (5.5)

Obviously, since the weights of the irrep are given by k&
(k= —s,—s+1,..,+5) and (8,6) =}, the above expres-
sion can also be easily obfained from the definition of the
index.

D. B(1,1)=0s8p(3,2)
Let A be a typical irrep with Kac-Dynkin labels

a, a,

@=—=>0 .
Then A = Ja,e, + (a, — 1a,)8,. In terms of the labels (g;p)
introduced previously (see Ref. 19) we have A =]pe,
+¢b,. Since N, =4(2g—1)(p + 1), one finds from
(4.7), (4.9), and (4.10),

IP=32q— D+ D[P+ +¢ —q+¥]
(5.6)

E. D(2,1)=08p(4,2)=D(2,1;1)

For a representation with Kac-Dynkin labels
(a1,95,a3), the highest weight is given by'® A = pe, + g€,
+ re; with p = (2a, — a, — a;)/2, ¢ = a,, r = a,. The di-
mension of this representationis 16( p — 1) (g + 1).(r+ 1),
hence (4.19)-(4.21) leads to

IP=4p—-D@+ D0+

X[PP—2p+F+29+7P+2r+9).  (57)

Vi. THE SUPERINDEX AND SUPERANOMALY

For n an integer, we define the superindex of order (2n)
of a representation with highest weight A of a Lie superalge-
bra L by

S = ; (~ 1) P A", (6.1)

where ( , ) istheinner product on H * introduced previous-
ly, and a(A) is the degree of the weight A: o(4)€Z,. Note
that the zero-order superindex is equal to the superdimen-
sion N3 . The superanomaly A%, is defined in a similar way.
Let A € denote the component of a weight A in the u(1)-
direction. Then

A3 =;( —1)7P e, (6.2)
The superindex has properties similar to those of the index.
If a representation with highest weight A decomposes into
representations with highest weights u of some subalgebra,
then
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SSE= 3 puSED,

n u = a,b,c
where the p, are the same as in (2.9). And if the direct
product of two representations (A,) and (A,) with superdi-
mensions N$ and N3, respectively, decomposes into repre-
sentations with highest weights 4, then

(6.3)

SSP=N3SP+NISP +243 45, (6.4)
A
Remember that for a typical representation (A) of any basic
classical Lie superalgebra L different from B(0,n) one has
N3 =0.

The superindex can be expressed in terms of the super-
character y3 of a representation. Kac'” has given a general
formula for the supercharacter of a typical representation,

Yi =B3E/N) (6.5)
with
BS= [ (#97—e~F®?, (6.6)
Beagt
£r= D €wert o, (6.7)
weW

and A is the same as in (3.3). In order to define €' (w), let
A ={aehg |(a/2)eA ) (6.8)

Then €' (w) is + 1 (resp. — 1), if the number of reflections
with respect to the roots of A;" in the expression of w is even
(resp. odd). The supercharacter can also be written in the
following form:

=73 &v- 3 & (6.9)
A even A odd
Hence, P = 2,5 () with
Lo g%y
s =y X (6.10)
i=1 (8¢7,) P=0

From the supercharacter formula one can, at least in
some cases, derive a general expression for the superindex.
First, letL #B(m,n) or G(3). Then'” Ay" = Ag",and hence
€(w) =€e(w), or £5 = £,. Now, one can do a calculation
similar to that in Sec. II1. All terms that become proportion-
al to the superdimension vanish, since N = 0 for typical
representations. Then, it is easy to check thatfor L #B(m,n)
or G(3),

S@P =0 for A >2. (6.11)

The last condition follows from the explicit form of
3.(3%B /9 ?) and the fact that B contains exactly #A"
factors.

Due to the appearance of €' (w), we have not been able to
derive a general expression for §$¥ in the case of
L = B(m,n) or G(3).

Also the superanomaly can be evaluated. Now
L = A(m,n) or C(n), since the superanomaly vanishes oth-
erwise, and therefore y5 = B¢, /A. Let A © denote the com-
ponent of a weight A in the u(1)-direction; then

d
AL =—0n)] - (6.12)
a¢ =0
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Explicit calculations show that 43 is proportional to N5,
hence

A% =0 (6.13)

for all typical representations of all Lie superalgebras.

Finally, we shall determine some explicit expressions for
superindices of certain Lie superalgebras. For the examples
considered here, the structure of the representations is well
known,'? and we could calculate the superindex making use
of the decomposition into irreps of the even part Lg. The
notation is the same as introduced previously (see Sec. V).
The appearance of a + sign should be interpreted as fol-
lows: the upper sign corresponds to the value of the superin-
dex with the highest weight an even weight, the lower sign
with the highest weight an odd weight.

1. spi(2,1)=0sp(2,2)

spl(2,1) is a superalgebra with #A " = 2,505’ need
not be 0. Indeed we find

SP=+(+1D. (6.14)
2 o0sp(1,2)=B(0,1)

S = +s(s+ 1. (6.15)
3. osp(3,2)=8(1,1)

S@P=T3p+1). (6.16)
4. 0sp(4,2)=D(2,1)

S@ =0, (6.17)

VIl. SOME APPLICATIONS

Let us first illustrate how the indices can be used to
verify branching rules. Let L = D(2,1) and consider its
principal®® B(0,1) subalgebra. One way to determine how a
representation ( p;g;r) of D(2,1) decomposes into irreps (s)
of B(0,1) isto construct the weight diagram of ( p;q;7) expli-
citly and then deduce the subalgebra contents by projecting
on the subalgebra weight space. Using this method, we have
found, for instance,

GLO) =) +24H) +23)+ 3D+ 2, (7.1
where the number in front of {s) denotes the multiplicity of
the irrep (s). This decomposition can be verified in three

ways, namely by using the dimensions, indices (2.9), and
superindices (6.3):

dimensions: 64 =11 +2X94+2X7 4+ 3X5+2X3,
(7.2)

indices: 160 =354+ 2X30+2X14+3X54+2X1,
(71.3)

superindices: 0= — 154+ 2X10—2X643X3 —2X1.
(7.4)

Since B(0,1) is the principal subalgebra of D(2,1), one has
totakep, =p, =p, = 1in (2.9) and (6.3). Then they give
rise to (7.3) and (7.4). Note that in many cases the relations
arising from dimensions, indices, and superindices enable us
to find the decomposition of representations. As an example,
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consider ( p;g;7) = (2;1;0). Since B(0,1) is a principal sub-
algebra, the highest s-valueisp + ¢ + r + 1, which is 4, and
it occurs with multiplicity 1. Hence, the decomposition must
be of the form

(2,1;0) - (4) +a(3) +b(2) +c(1) +d(0). (7.5)

Then, dimensions, indices, and superindices give rise to the
following three relations, respectively:

Ta + 5b+3c+d =23, (7.6)
l4a+5b+c = 34, (7.7)
6a—3b+c = 10. (7.8)

Moreover, we have the condition that a, b, ¢, and d must be
non-negative integers. Hence, it follows from (7.7) that a
can only be 0, 1, or 2. For a=0, we find (bcd)
= (3,19, - 49);fora =1, (b,c,d) = (2,10, — 24), and for
a = 2 one obtains (b,c,d) = (1,1,1), which is the only ac-
ceptable solution. Consequently, the decomposition reads

(2;1;0) — (4) +2(3) + (2) + (1) + (0). (7.9)

As a second example, we shall illustrate how the indices
and superindices can be used in order to verify—or some-
times determine——the decomposition of the tensor product
of two representations. Consider the case of L = C(2) with
Ay (K j) = (1;2) and A;: (k;j) = (1;3). Then N, =12,
IP=25N, =161 =52,and4, =4, =0. Hence

N JIQP+N,ID +24, A, = 1024, (7.10)

Now, from weight space techmques one can calculate the
following decomposition of the tensor product:

(1;2) 8 (1;3) = (2;5) + (2;3) + (2;1) + (1;6) +2(1;4)
+2(1;2) + (1,0) + (0;5) + (G;3) + (G;1).  (7.11)

Then, using (5.3), it is easy to see that the indices in the rhs
of (7.11) are given by

182 + 68 + 18 + 245 + 2X95
+2X25+4 3+ 182 + 68 4 18 = 1024.

It turns out that the indices provide us with a very useful and
nontrivial check for the decomposition of the tensor product
of two representations.

VIil. (SUPER)INDICES AND (SUPER)ANOMALIES FOR
PLETHYSMS

In this final section we present some formulas for (su-
per)indices and (super)anomalies of plethysms for Lie su-
peralgebras. A plethysm for a Lie algebra is the component
of the direct product of n copies of some representation p
whose permutation symmetry is described by a Young tab-
leau.® For Lie superalgebras, a representation p contains
both even and odd weights. A supersymmetry class of n
copies of p is then defined by taking the corresponding class
for the even weights and the conjugate class for the odd
weights. For example, consider first the symmetry class de-
termined by the Young tableau (ITT1. If we divide the origi-
nal set of weights into two disjoint sets of weights, this sym-
metry class can be written as

Oo=0De1+Me0+0600+ 1&IM10.

(8.1)
Hence, if we split even and odd weights, we obtain for the

1680 J. Math. Phys., Vol. 28, No. 8, August 1987

supersymmetry class
D -MWNe | +MeT+ DO+ eﬁ,

(8.2)

where the boxes in the rhs of (8.2) have been labeled by O or
1 when they refer to even or odd weights, respectively.

We denote the representation p on which a plethysm is
based by a single box O. This representation p may be reduc-
ible, irreducible, indecomposable, typical, or atypical. Its di-
mension is &, its superdimension Ny. Furthermore, its sec-
ond-order index is I, its second-order superindex is S, its
first-order anomaly is A, and its first-order superanomaly
isdg.

The index for a supersymmetry class can now be deter-
mined by calculating the indices for the corresponding sym-
metry classes in the even and odd weights. Making use of
decompositions like (8.2) and of formulas for indices of
plethysms for ordinary symmetry classes,” we obtained the
following expressions for (second-order) indices of pleth-
ysms for Lie superalgebras up to four boxes,

Im =N +25; +45, (8.3)
I =NI; —25, +4% (8.4)
I =¥N?*+Ns+ 61

+2NSq + NAYL + 24,43 (8.5)
I = (N2=3)I5 +2NA} (8.6)

I =}(N?—
E —2NSo + NA% — 24,45,
o= J(N?+ 3NN +20N)I; + (N? + Ng

+ 4S5 +3(N? + Ns + )4}

N + 6)I5
(8.7)

+ (A45)? + 4NA AS, (8.8)
IB:U _i(N3+NNS)ID + (N2 —Ng — 8)S;
+5(3N2+NS)A2E, — (A5)*+2NA A%,
(8.9)
+ (N2 =2)4% +2(45) (8.10)

1 =}(N?—~NNg)I5 — (N? + Ns — 8)8g
ﬁn +313N? —N5)4L — (43)* — 2N4pA 3
(8.11)
I =}(N?— 3NN +20N)I; — (N? — N;
E +4)So +3(N?—Ng +4)4%
+ (A%)? —4NA A5, (8.12)
Note that (8.3)—(8.12) can be checked by
D®D=ED+E, (8.13)
D®D®D=CL:D+2EP+B, (8.14)
O®CeOen0
=EEII]+SBIJ+2E+3E:|+E, (8.15)
and
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Inoe. en=kN* " Ug + k(k—1)N* 242, (8.16)
N

k times
For Young tableaux up to four boxes, the superindices
are

Sy = Ws + 85+ (48)% (8.17)
SB = (Ns —2)85 + (43)% (8.18)
S = iWVs + 2)(Ns +3)85 + (Ns +2)(43)°,
(8.19)
SEP = (N5 —3)S; +2N:(43)?, (8.20)
S, =1(Ns —2)(Ns — 3)Sq + (Ng —2)(43)?,
@ (8.21)
S = ¢Ws + D (N5 + ) (Vs + 45,
+ 1(Ns +2)(Ns +3)(45)?, (8.22)
SBI’ = (N5 +2)(N5 +Ns — )8
+3(Ns +2)(3Ns — D(43)?, (8.23)
SEB =INg(N: —4)S5 + N3(43)%, (8.24)
S, = }(Ng —2)(N% — Ng —4)S,
Ej +4(Ng —2)(3Ns + D(43)? (8.25)
S =1(Ns —2)(Ns —3)(Ng —4)S5
E + 3(Ns —2) (Ns —3)(42) (8.26)

These expressions contain in the rhs only the superdi-
mension, the superindex, and the superanomaly. Again they
can be checked by means of (8.13)—(8.15) and

S oo =KkN 1S, + k(k — 1)NE—2(45)2
(8.27)

Using a similar method, we obtained expressions for the
anomaly and superanomaly for a plethysm:

Am = NAp + 43, (8.28)
AB =NA; — A3, (8.29)
Ay =HNPHNs+ DA + NAD, (8.30)
A = (N>—2)4, (8.31)
Ag =}(N? =Ny +2)4q — NAE, (8.32)
A =W >4+ 3NNs + 8N)Ag
+ 3 (N?+ Ns +2)43, (8.33)
% ={(N>+ NNg)An +3(N> —Ns — )43,
H- (8.34)
AEE = (N> —4N)Ay + Ng47F, (8.35)

A—g:] =%(N3—NNS)AD_%(N2+NS—2)Aé,
(8.36)

A = }(N?— 3NN; + 8N) 4,
— (N> = Ng +2)45; (8.37)
AL =Ws+ D43, (8.38)
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Aé = (Ng— 148, (8.39)
A4Sy =W + DV +2)48, (8.40)
Aéj =(N2-1)48, (8.41)
Aé =J(Ns — 1)(Ng —2)45, (8.42)
AEIID =1(Ns + 1)(Ng +2)(Ng +3)45, (8.43)
AéI‘, =1(Ng — D(Ns + D (N5 +2)43, (8.44)
‘AESB =§(Ng — DN (Ng + DAE, (8.45)

S =1(Ns + 1)(Ns — 1)(Ns —2)4 5, (8.46)
AS =1(Ns — 1)(Ns —2)(Ns —3)43. (847)

These expressions can be checked making use of (8.13)-
(8.15) and

k—1
AD@D®-~~®D=kN Ag,
N~

k

AL te. au=kNE"145. (8.48)

k

IX. CONCLUSIONS

The purpose of this paper was to define the indices of
representations of simple Lie superalgebras and to study
their properties. These indices are close analogs of similar
objects in the representation theory of simple Lie algebras. It
turns out that the definition can proceed in two directions:
(1) indices and (ii) superindices. The former are none other
than ordinary (Lie algebra) indices typically for semisimple
but not simple algebras (or even reductive Lie algebras) and
their specific, in general reducible, representations. The rela-
tion of the superindex to the index is analogous to that of the
supertrace to the trace. Very often it turns out to be zero for
irreducible representations. Nevertheless it is a useful quan-
tity as exemplified above, for instance, in computing branch-
ing rules; the indices in the reduction must add up to zero.

Our definitions (2.1) and (6.1) follow the original
definition® of higher indices which, except for the degree 2
index, makes no use of Casimir operators. The index can be
defined for every degree (not all properties may exist!) and
as such could be related to polynomials in Casimir operators.
It may sometimes be advantageous to define the (Lie alge-
bra) indices differently, their existence tied to the existence
of Casimir operators.'"''> We have not pursued this direction
here although in our opinion it is a worthwhile and challeng-
ing problem.

Applications of the indices are directly proportional to
the need to calculate with the representations of simple su-
peralgebras. We have exemplified some obviously useful
possibilities like decomposition of tensor products and com-
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putation of branching rules. One can also point out physics
applications of the (simple Lie algebra) indices in a rather
different context.?! It appears plausible to expect that some
version of physics theories in the not too distant future will
also involve simple superalgebras.

The concept of indices of representations (like that of
the dimension of representation) is more general than has
been explicitly explored so far. It hinges on the existence of
the weight lattice and thus on the triangular decomposi-
tion?? of the algebra but on little else. As an example let us
recall the definition of the dimension and indices in the Kac-
Moody situation.!> While the traditional dimensions and in-
dices would be infinite and hence useless, one has perfectly
useful definitions of dimensions and indices (with virtually
all the useful properties preserved) as certain power series in
one or more variables.

Finally, let us end with a suggestion that a tabulation of
the indices for the superalgebras should be a relatively easy
task which could be both useful and popular.
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Parent potentials for an infinite class of reflectionless kinks
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The sine-Gordon and ¢-four kinks are known to be reflectionless by virtue of the fact that
their small oscillations are governed by the modified Poschl-Teller potential U, (x)
=1—[(I+ 1)/I]1sech®*(x/I), with = 1 and 2, respectively. An infinite class of parent
potentials ¥, (#) analogous to ¥, ~ 1 — cos ¢ for sine~Gordon kinks and ¥, ~ (1 — ¢*)? for
¢-four kinks, which bear reflectionless kinks, are constructed. This is done by requiring the
lowest bound-state eigenfunction of U, (x) to be proportional to the spatial derivative of the
kink waveform ¢’ (x), i.e., the translational mode of the kink. The resulting differential
equation is solved for ¥, (¢) to find that it can be expressed in terms of the student’s ¢
distribution of probability theory. Various properties of the parent potentials and their

reflectionless kinks are discussed.

. INTRODUCTION

The so-called *“‘sine-Gordon” (SG) and “¢-four” non-
linear wave equations have found widespread use in recent
investigations of solitary-wave (kink) phenomena in both
condensed matter physics' and particle physics.” These two
members of the large family*® of nonlinear Klein-Gordon
wave equations (possessing particlelike kink solutions)
share the remarkable property that they do not reflect inci-
dent linearized solutions (e.g., phonons*). Although this re-
flectionless property is not a fundamental requirement for
the development of statistical mechanics phenomenolo-
gies*~® or perturbation theories’"'® of kink dynamics, it does
allow for a simpler treatment than for kinks without this
property (e.g., the double-quadratic™'® and double-sine—
Gordon® kinks).

The reflectionless property of the SG and ¢-four kinks is
found by considering the nature of small oscillations about
the static kink waveforms. The spatial dependence of these
small oscillations (phonons) is governed by an equation of
Schrodinger form (see Sec. I below ). Remarkably, the “po-
tential” appearing in this pseudo-Schrodinger equation is of
the modified Péschl-Teller!! type (~ — sech® x) for both
the SG and ¢-four cases. For special values'' of the magni-
tude of this sech’ x potential, incoming “particles” are not
reflected but suffer only a phase shift. These special magni-
tudes for which the potential is reflectionless can be charac-
terized by an integer (/ = 1,2,...,00 ); it is a curious fact that
the appropriate Poschl-Teller potentials for the SG and #-
four problems have / = 1 and 2, respectively.

The SG and ¢-four equations arise from a nonlinear
Klein—-Gordon Lagrangian in which the self-coupling term
(~¢?) is replaced by a nonlinear potential function V()
[~1—cos ¢ for SG and ~ (1 — ¢*)? for ¢-four; see Sec.
IT]. We call this potential function the “parent potential” for
the kink to distinguish it from the potential function which
appears in the pseudo-Schrodinger equation for the small
oscillations about the kink. Noting that the parent potentials
for SG and ¢-four lead to reflectionless Poschl-Teller poten-
tials with / = 1 and 2, respectively, the question arises as to
whether there might exist other parent potentials in the non-
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linear Klein—-Gordon family which would lead to kinks hav-
ing Poschl-Teller potentials with / = 3 or higher. If so, then
the SG and ¢-four kinks would be joined by other reflection-
less kinks for which the statistical mechanics® and dynam-
ics” could be treated with ease, since the eigenstates of the
Poschl-Teller potential are known exactly!' (see Sec. IIT).

The search for additional parent potentials of reflection-
less kinks is not merely an academic exercise. Since the SG
and ¢-four potentials cannot be expected to describe all
physical situations of interest (particularly in condensed
matter), it would be very beneficial to have additional model
kink-bearing potentials at hand for which the small oscilla-
tions are known exactly. In this paper, we show how to expli-
citly construct the parent potentials V, (@) for the entire infi-
nite class of reflectionless kinks whose associated small
oscillations are governed by the modified Péschl-Teller po-
tentials with / = 1,2,..., 0. We find that there are two sub-
classes of parent potentials depending on whether /is odd or
even. For / odd, the parent potentials are periodic functions
of ¢ and SG is the first number (/ = 1) of this subclass. For/
even, the parent potentials have unbounded double-well
character and ¢-four is the first member (/ = 2) of this sub-
class.

The outline of the remainder of the paper is as follows.
In Sec. Il we review the essential features of nonlinear
Klein—-Gordon kinks and their associated small oscillations.
Special attention is paid to the zero-frequency “translation
mode” *'° which must be present in the spectrum of small
oscillations as a consequence of translational invariance. We
then specialize to the SG and ¢-four examples of parent po-
tentials of kinks whose small oscillations are governed by the
modified Poschl-Teller (PT) potential with / = 1 and 2, re-
spectively. In Sec. IIT we collect some of the properties of the
reflectionless (/ = 1,2,3,...) PT eigenstates and give general
phase-shift formulas for the continuum states (phonons). In
Sec. IV we then construct the parent potentials ¥, (¢) for all
/>1 by requiring the lowest bound-state eigenfunction of the
PT potential to be proportional to the spatial derivative of
the kink waveform ¢, (x), i.e., the translation mode of the
kink. Although this identification has been noted earlier by
Christ and Lee, ' we actually carry out the explicit construc-
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tion of V,(¢) by solving the resulting differential equation
for ¥,(¢$). Wefind that the parent potential can be expressed
in terms of the student’s ¢ distribution of probability theory.
Plots of V,(#) are presented for / values up to six. The ana-
lytic properties of ¥, (¢) near its degenerate minima are dis-
cussed. Finally, in Sec. V we summarize our results and dis-
cuss various uses of these higher-order parent potentials.

Il. NONLINEAR KLEIN-GORDON KINKS AND THEIR
SMALL OSCILLATIONS

In this section we briefly review the derivation of single-
kink solutions to the equations of motion of the nonlinear
Klein—Gordon variety (e.g., SG and ¢-four) and the equa-
tion of motion for small oscillations about the kinks. We then
specialize to the SG and ¢-four cases as the two well-known
examples of reflectionless kinks which have the modified
Poschl-Teller (PT) potential for their small oscillations.

The general nonlinear Klein-Gordon Lagrangian we
consider has the dimensionless form

L= e S-S -vw)], @1
2 2

where x and ¢ are dimensionless space and time variables,
respectively. The nonlinear parent potential V(¢) is as-
sumed to have at least two degenerate absolute minima, at
say ¢, and ¢,, such that V(¢,) = V(¢,) = 0. In addition, we
assume that ¥(4) is scaled in such a way that it has unit
positive curvature at its degenerate minima. The nonlinear
wave equation satisfied by ¢ (x,2) is

¢tt "'¢xx + V,(¢) =0,

where the prime on V(¢) denotes a derivative with respect to

¢. Static single-kink solutions ¢4 (x) of Eq. (2.2) may be

obtained by direct integration with the boundary conditions
dig (x)

dx X = 4 o0

2.2)

=0 (2.3a)

and
$r(x= —w)=¢, Px(x=+w)=¢, (2.3b)
for kinks and Eq. (2.3b) with ¢,<>¢, for antikinks (this is

the standard convention if ¢, < @,). Thekink ( + ) and anti-
kink ( — ) solutions are given by

1 (™ _dg

3 o B
Moving kink solutions can be obtained by a Lorentz boost.
We shall henceforth be concerned only with the static kink
( + ) solution since it is not necessary to consider moving
kinks in order to derive the general parent potentials of inter-
est (Sec. IV).

The equation governing small oscillations about the
static kink waveform is obtained by substituting

x (2.4)

d(x,t) = P (x) + P(x,1) (2.5)
into Eq. (2.2) and linearizing in ¢:
Yo — Y + V" (B (X)) =0. (2.6)

Here V" (¢« (x)) denotes the second derivative of ¥ (¢) with
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respect to ¢ evaluated for ¢ = ¢, (x). Writing ¢ as

P(x,t) = flx)e ™™ (2.7)
leads to the following eigenvalue equation:
—fu + V" (dx (0)) f= 0. (2.8)

Due to the localized nature of the kink waveform ¢ (x), the
function ¥ "(¢x (x)) varies mainly in the region near the
kink center (assumed to be at x = 0) and approaches unity
{due to our assumption of unit curvature) far away from the
kink center,

Viige () = 1. (2.9)

x| > 0
Moreover, the function V' *(¢, (x)) has a minimum at x =0
such that

V' (@g(x))<0. (2.10)

From these properties, we see that there exists a close analo-
gy between Eq. (2.8) and the Schrodinger equation for a
particle moving in a one-dimensional “potential well,”
V "{¢x (x)). The “bound state(s)” and “continuum” states
for this potential are of fundamental importance for statisti-
cal mechanics phenomenologies,* perturbation theories of
kink dynamics,” and quantization procedures for kink
states. !> :

Since the Lagrangian (2.1) possesses translation invar-
iance, the spectrum of small oscillations about a single kink
must contain a zero-frequency (@ = 0) translation mode
(Goldstone mode) that restores the translation invariance
broken by the introduction of a kink at x ='0. This means
that Eq. (2.8) must always possess a “bound” state solution
with w? =w?; =0 (and perhaps other bound states with
0 <w?<1) and the corresponding bound state wave func-
tion £, , (x) will be proportional to the spatial derivative of

¢K(x)9

d
f;,,l (x) « ¢K(X)

dx

as can be shown easily by differentiating Eq. (2.2) with re-
spect to x and setting ¢ = ¢, (x).

In addition to the translation mode at »* = 0, there may
exist additional bound state solutions of Eq. (2.8) with-non-
zero frequencies (between O and 1). The solutions corre-
spond to “internal” oscillation modes in which the kink
waveform undergoes a harmonically varying shape change
localized about the kink center. We denote the bound-state
eigenfrequencies by w,,, =0, @, 3,...,@,,,, Where N, is the
total number of bound states. The lowest of theseis w, ;, =0
(the translation mode) since all other w}, must be non-
negative in order for the kink to be stable against small oscil-
lations.

In addition to the bound-state solutions of Eq. (2.8),
there exist continuum states (extended modes) which we
label by a wave vector k. These states have eigenvalues w?
given by

0 =1+k2, (2.12)
which is precisely the dispersion relation for small oscilla-

tions (phonons) in the absence of kinks. Equation (2.12)
follows from the fact that far away from the kink the poten-

) (2.11)
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tial ¥ "(¢ (x)) approaches unity [Eq. (2.9)]. Although the
precise form of the continuum eigenfunction f; (x) can be
quite complicated in the region of the kink, it has the follow-
ing simple asymptotic form for the reflectionless potentials
V"{¢x (x)) which we consider in this paper:

Silxy - (2.13)

X 4

A expilkx £ 1AK)],

where A (k) is a phase-shift function which depends on the
potential at hand. This phase-shift function is an extremely
important quantity since it contains all the information con-
cerning kink—-phonon interactions that is needed to renor-
malize the kink energy due to thermal® or quantum'* fluctu-
ations (or both'”).

Now we consider the SG and ¢-four cases in particular.
The parent potentials are

Vi) =1—cos¢d (SG), (2.14a)
Vo(d) =14 (¢> — 1)? (g-four), (2.14b)

where the meaning of the subscripts 1 and 2 will become
clear in a moment. The static single-kink solutions are

by (x) =4tan"'e* (SG), (2.15a)
¢y (x) =tanh(x/2) (¢-four). (2.15b)
For future reference we give the dimensionless energies of

the static kinks obtained from the general relation,*

+ )
E, = 2J dx Vige () =v2 | deyVid). (2.16)
o #

These are
E. =8 (8G), (2.17a)
Ey =% (¢-four). (2.17b)

From Egs. (2.14) and (2.15) it is straightforward to
derive the potential function V' "(¢ (x)) which appears in
Eq. (2.8). We find

Vidg(x))=1—2sech’x (SG),

Vilgg (x))=1—3sech’(x/2) (¢-four).

(2.18a)
(2.18b)

These two potentials are special cases (/ = 1 and 2, respec-

tively) of the modified Péschl-Teller (PT) potential,!
U (x)=1— [+ 1)/]]sech*(x/]), 2.19)

for which the exact eigenstates are known analytically.'' The
SG case has exactly one bound state (the translation mode),

Jor (x) = (1/V2)sechx, wj, =0, (2.20)
and the continuum states

L x)=02r(1 + k)]~ "2%*(k +itanhx). (2.21)
The ¢-four case has fwo bound states,
Sy (x) =4[ sech®(x/2), wj, =0, (2.22a)
Jo2 (x) =4 V3sech(x/2)tanh(x/2), @}, =3, (2.22b)

and the continuum states
Jix) = [87(1 4+ k2) (1 4 4k2)] ~ /2™
X (3 tanh*(x/2) — 6ik tanh(x/2) — [1 + 4k ?]).
(2.23)
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These states satisfy the orthonormality conditions

+ o
f dx fo, (X)fom (X) =6, , (2.24a)
+ o
f dx f¥(x)fi (x) =6k — k'), (2.24b)
f wdxfk(x)fb,n(x)zo, (2.24¢)

and the completeness relation,

Ny + o
N fon o (X7 +J dk fE(x)Yf (x") = 6(x —x").

n=1

(2.25)

From Egs. (2.21) and (2.23) we find the phase shift func-
tion defined in Eq. (2.13):

Ak)=m(k/lk|) —2tan 'k (SG),  (2.26a)
Ay(k) =2m(k/|k|) —2tan 'k
—2tan"'2k (¢-four). (2.26b)

ll. EIGENSTATES OF THE REFLECTIONLESS
MODIFIED POSCHL-TELLER POTENTIAL

In this section we collect some of the useful properties of
the eigenstates of the modified PT potential (2.19) for arbi-
trary positive values of the integer index /. In the next section
we shall construct the parent potentials V,(¢#) for which the
small oscillations about the kink solutions satisfy Eq. (2.8)
with the PT potential,

Vige () =1—[(+1)/1]sech?(x/D), (3.1)
namely,
2,00
a7 1= [+1 sech? X FO = O (3.2)
dx? / /

Using the substitution 7 = tanh(x/7), this equation be-
comes the associated Legendre equation’®

d2 hH [€)]
(1—n% fz —217df
7 dn
12(1—w2)]f(1)___0
1—9° '

The normalized bound state solutions are

l()l’)'(x) — [(l_n + 1)(” _ 1)!]1/2Pf_"+1(tanh§)

+[l(1+1)— (3.3)

121 —n+ D!
(n=12,.0), (3.4)
with eigenvalues
@y, =1—[1—=[(n—1/1F. (3.5)

The function P{~ "+ '(tanh(x/])) is the associated Legendre
polynomial.'® The continuum states are

F(x) = A4 L P tanh(x/])), (3.6)

where 4 (" is a normalization constant which we will not
need for our purposes. Using the expression of P}, (z) in
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terms of the hypergeometric function,'® we can write
A U]
D (%) = k
S (1 —ilk)

Xe®F(—1, 1+ 1; 1 —ilk;

3 [1—tanh (x/D]). (3.7)

This hypergeometric function F is simply a polynomial of
degree / in the variable, 1 — tanh x/I. From its asymptotic
behavior?® we can calculate the phase shift function A, (k)

k ! Ik
L)
Ik | 2 n

The only state which we shall need in order to construct
these parent potentials is the ground state (translation
mode),

F&x) = [21— D)N/2'11]V2sech!(x/]).

A, (k) (3.8)

3.9

IV. CONSTRUCTION OF THE PARENT POTENTIALS

We seek the parent potentials ¥, (¢) whose daughter
kinks ¢ (x) are reflectionless by virtue of the potentlals they
present to small. oscillations,

Vige(x))=1—[(+ l)/l]SCChz(x/l) (4.1)
From Eq. (2.11) we know that the translation mode f§} (x)
[Eq. (3.9)] is proportional to'd¢y (x)/dx. Let the propor-
tionality constant bedenoted by a,; it will be.chosen laterin a
convenient manner. Thus we have
ddy ( x)
-dx

From Eq. (2.4), d¢ /dx can be expressed in terms of V),
itself,

d
P12 Ve G

Combining Eqs. (3.9), (4.2), and (4.3), we have
sech’(x/1) = a, [2'11/(21 — DUT2[2 Vg (x))] V%

M) = (4.2)

(4.3)

(4.4)
Substitution of Eq. (4.4) into Eq. (4.1) then yields
Vige(X)=1— [+ DAV X))V, (45)
where

=(1/a?) [ (21 - 1)1/2!+ 1] (4.6)

is the height of the barrier between adjacent minima (at ¢,
and ¢,) in the parent potential, as can be seen by setting
x =0in Eq. (4.4).

Equation (4.5) provides a differential equation for
V,(¢) for all values of ¢ between ¢, and ¢, [the range swept
by the kink ¢, (x)]. Thus

d?V,(4) I+1[Vi($)

We remark that the positive real branch of the /th root of
V,(¢)/V{ must be chosen in Eq. (4.7), to be consistent with
Eq. (4.4) for ¢,<¢<¢,. Although Eq. (4.7) was derived
assuming ¢ is in the kink range, we may obtain ¥, (¢) for ¢

(4.7)
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outside this range by an appropriate analytic continuation. It
is convenient to proceed separately for the cases / odd and /
even.

(1) / odd: All of the parent potentlals in this class are
periodic functions of ¢ with period ¢, — ¢,; they have the
same topology as SG (/ = 1) which is the first member of the
class. It is therefore convenient for / odd to choose ¢, =0
and ¢, = 27 so that all of these potentials have period 27.
This choice fixes the barrier height V9, which in turn deter-
mines the constant @, via Eq. (4.6). Furthermore, we see
from Eq. (4.7) that ¥;(4) can be made symmetric in 4,

Vi(—¢) =V (4).
Combining this symmetry with the periodicity property, we

see that V;(¢) is also symmetric about 7. Thus we need only
integrate Eq. (4.7) in the range 0<@<#. The first integral is

(4.8)

easily obtained,
dV (¢) V(¢) viy2
‘;¢ = [2V,(¢)]”2{1 - [—’-V?—] : (4.9)
Intggrating once more, we have
Vi) 11y —12
- Lia [ [V°] ] . (410)

This equation gives an implicit solution for V,(¢) for
0<¢< 7, and can be reexpressed in several equivalent forms.
Defining

&= [V,(¢)/V?]”2', 4.11)
we can write
¢=1(2V?)'/2f "d0sin'~ 0 (4.12)
0
| =1(2V?)”2'dey"‘(l — )2 (4.13)
VO 172
_1( ) B(i,-l-)z z(i,i), (4.14)
2 272 272

where I, (a,b) is the normalized incomplete beta function®'
and B(a,b) is the beta function.’> Here B(a,b) may be ex-
pressed?? in terms of gamma functions by

I‘(a)l"'(b)/I‘(a +b).

The function I, (a,b) lies in the unit interval: I(a,b) =0,
I,(a,b) = 1. The barrier height V¢ is now determined by
noting that ¢ = # is the midpoint of the barrierand &, = 1 at
this point. Thus from Eq. (4.14) we have

B(ab) = (4.15)

V?=2a*/1’B*(1/2,}) (I odd). (4.16)
Equation (4.14) then becomes
¢ =7l,:(1/2)). (4.17)

Because of the particular values of the indices of the
incomplete beta function appearing in Eq. (4.17), we can
relate 1,,(//2,}) to the so-called “student’s ¢ distribu-
tion,” ' 4(# |I) which arises in the theory of probability dis-
tribution functions.?’ Namely,

Ig}(l/2,§) =1—-A@|D, (4.18)
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where

t=VI[(J1-¢£D)/E ] (4.19)
Thus
| —g/m=A(t|) (0<g<m) (I odd). (4.20)

If we denote the inverse of the student’s ¢ distribution func-
tion by 4 ;7 '(x), then

t=A;'(1 —¢/m). (4.21)
From Eq. (4.19), we have
=/ +1%). (4.22)

Hence, using Eqs. (4.11), (4.21), and (4.22), we finally ob-
tain a formal expression for the normalized parent potential
Vi()=Vi($)/V?,

Vi) ={/10+[4,'(1 —¢/m) Y
(I odd; 0<p<m). (4.23)

For ¢ outside this range, V, (@) is continued from Eq. (4.23)
using

ViQe — )=V, (¢) =V, (¢ + 2mn),
where 7 is any integer.

Although Egs. (4.23) and (4.24) represent the formal
solution to the problem of finding the periodic (! odd) par-
ent potentials, it is not convenient to use Eq. (4.23) directly
if one wishes, for example, to obtain a plot of l~/, (@) vs ¢.
Instead, it is much easier to obtain ¢ in terms of ¥, by making
use of Eq. (4.20) and a finite series expansion®"** of the
student’s ¢ distribution,

(4.24)

2 D2 (2 — 2!
A(t|l)=?[0+sm0 ,.;1 EZT—I;—HCOSZ"“G’,
(4.25)
where
O=tan~! (¢ /). (4.26)
Using Eq. (4.22) we can reexpress & as
0 =cos ¢ (4.27)

and from Eqs. (4.20), (4.11), (4.25), and (4.26) we then
have

T—¢
2

=cos™' V}/*

- D7 (2n =2 -
+ 1— Vl/l 1/2 V(n—1/2)/1.
U=ry X G

(4.28)

Equation (4.28) provides a simple, explicit expression for ¢
as a function of ¥, which may be plotted in the range
0<@¢<m, 0<V,<1. The curve thus obtained can then be in-
verted and extended to include several periods of ¥, (¢) us-
ing Eq. (4.24) ifdesired. In Fig. 1, we show the results of this
procedure for / = 3 and 5, in addition to a plot of ¥, (¢)
=1 (1 —cos ¢), which is the sine~-Gordon potential. Note
the tendency for the barrier between adjacent minima to be-
come more plateaulike as /is increased. Indeed, this behavior
becomes extreme in the limit as / —» oo . This can be seen from
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v, (9]
2.0+
151
1.0
e o — “\
S >\ osE
N // \\
> 2 A
1 1 !
-2 -3m -7 3 0

FIG. 1. The first three periodic parent potentials (/ odd).

the limit of the student’s ¢ distribution,
t
llmA([|l)EA(t):LJ- e—xz/zdx
I— o0 \/E .

=erf(v2 1), (4.29)

where erf(v2¢) is the error function.>® Thus using Egs.
(4.11), (4.19), and (4.20), we have in the limit / - o

¢/m = lim erfe[ 21 {(1 = V")y/V}}/?],  (4.30)
I o

where erfcz =1 — erf z is the complimentary error func-
tion.** Since this function becomes very sharply peaked as a
function of [ (1 — ¥}")/V }']1"/2 when I becomes large, we
see that ¥ /' (and hence V,) must remain very close to unity
as ¢ is decreased from 7 until ¢ nears zero at which point ¥,
must drop sharply to zero. We note, however, that the bar-
rier height V¢ tends to zero in the large / limit as

vy - m/l

I- o

(4.31)

as can be shown from Eqs. (4.15) and (4.16) and the use of
Sterling’s asymptotic formula® for the gamma function.
(ii) / even: All of the parent potentials in this class have
the same topology as the ¢-four potential (/ = 2), namely a
double-well structure. It is therefore convenient for / even to

-1.5 -1.0 -0.5 0 Q.5 1.0

FIG. 2. The first three double-well parent potentials (/ even). For ¢ =~2.1,
the curves cross so that for fixed ¢, 2.1, V,(dg) > Vi(do) > V(o).
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choose¢, = — land ¢, = + 1sothatall of these potentials
have their two degenerate well-minima located at ¢ = + 1.
With this choice the potential is symmetric about ¢ = 0,
where the barrier has its maximum V{. Thus to first obtain
V,(#) in the kink range, — 1<¢< + 1, we need only inte-
grate Eq. (4.7) in the range 0<#< 1. The slope of V,(¢) is
negative in this range, so that the first integral of Eq. (4.7) is

dV1(¢) 1/2[ [Vl(¢)]l/l]l/2
= — [2V; . .
7 [2Vi(#)] 7o (4.32)

Integrating once more we have

Vi(é) dV y A\ - 12
= —— — 4.33
=gl Fl-G)]T e

= '—I(ZV(I))I/Zf dyyl—l(l _yz)—l/z
1

1
— 1(2V(I))1/2[J- dyyl— 1(1 _y2)—1/2
0

—f'dyy"‘(l—yz)“‘/z]
0
VO 172
2 sl
2 2°2 $\272
Noting that when ¢ = 1, £? must equal zero [Eq. (4.11)1],

we then obtain an expression for the barrier height when / is
even,

(4.34)

(4.35)

V9=2/1*B*(1/2,}) (I even). (4.36)
Equation (4.35) then becomes

1-¢=1I,U/72}) (0<4<1), (4.37)
or, using the student’s ¢ distribution,

d=At|D. (4.38)

This may be formally inverted as for the odd / case to give the
normalized parent potential

Vi) ={/M+[A7 (]I ( even; 0<g<1).
(4.39)

Equation (4.38) can be made more explicit by using the
series expansion for 4 (¢ |/) when / is even®":

172—1
A(t|D =sin9[1 +5 (2n — DIl

A @2e (4.40)

cos?” @ ] s

where @ is given in terms of t by Eq. (4.26) and in terms of £,
by Eq. (4.27). Thus Eq. (4.38) can be rewritten as

[2cos(3sin™!¢) —1]% 0<|gI<1,
T’4(¢) =

[2 cosh(3 cosh™'(4 —2)) + 1] [4]>3.
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[cos(3 sin™'(¢ — 2)) + V3 sin(3sin ' (¢ — 2)) + 1]“,

= {1 — vzl
=1 '} +,,§'1 omn !

(I even; 0<¢<1),

221 (2n — 1N T’"/']

(4.41)

where we have used Eq. (4.11).

To obtain results for |¢| > 1 we return to Eq. (4.32),
where we note that if ¥V, (4) » «_as |#| > o for each /, the
slope becomes imaginary when ¥; > 1. Choosing the nega-
tive real root of (¥,)!! avoids this problem and exactly re-

produces the ¢-four solution (for /=2). Since
V(¢) = V( — @) werestrict our attention to ¢ > 1 where the
slope dV,/d¢ > 0 and write
dV iy1/2
—L = 2V,($) [1 +( ’(¢)) ] . (4.42)
Hence

Vi) iy —-12
¢—1=% %[14-(-:—0) ] (4.43)
0 !

inh~! &,
=I,/2V?F (sinh x)’~'dx
0

(—2)72 .ﬂ
1)(1—2)/2 2 (_1) 2
n=0 n

[(E+ D@2 21]. @445)

(4.44)

=12V3( ~

X
2n+1

Therefore

b=1+12V0( -

1)(1—— 2)/2
(1—=2)2

1—-2)/2
X nzo (—1)”(( n)/)

1 VI 1/1 2n +1)/2
X —_ 1 -1
2n+1”(V?) +'] ]

(I even; ¢>1).

(4.46)

Equations (4.41) and (4.46) can be used to obtain ¢ vs
V,(4) plots for all $>0, whereupon the plots can be inverted
to give ¥, (¢). For <0, we use the symmetry of V,:
V,( — ¢) = V,(¢). In Fig. 2 we show the results of this pro-
cedure for / = 4 and 6, as well as the ¢-four parent potential
for comparison.

Apart from the ¢-four case (/ = 2), the only other case
for which Egs. (4.41) and (4.46) can be inverted analytical-
ly is I = 4. In this case, they become third degree polynomi-
alsin £2 = ¥ }* whose roots can be found in closed form?>:

1<|¢|<3, (4.47)
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TABLE 1. Barrier heights and kink rest energies for the first six parent po-
tentials.

0 (3]

! po E{
1 2 8
1 2
2 3 3
3 3 29
18
4 = ¥

128 65536

5 25% '1%1'73
6 25 100
312 731

From Egs. (2.16) and (4.9), we can obtain a simple
expression for the kink rest energies, E ¢ 0 for odd /,

Ek”zfz d¢[V,(¢)]‘/2
~1
—ZWJ dV(dV) N7
d¢
=2IV?I dzz' "' (1 —2)""?
0
or

EQ =2VIB(}). (4.48)

This result also holds for / even. Using Egs. (4.15), (4.16),
and (4.36), we have calculated the parent potential barrier
heights V'{ and kink rest energies for the first several values
of / and for convenience listed these in Table I.

The coefficients a, in Eq. (4.2) can be shown, using Egs.
(4.6) and (4.48), to be simply related to the kink rest ener-
gies via

a=[EQ] "~ (4.49)

The actual static kink waveforms can be obtained from Eqs.
(4.2), (4.6), and (3.9) in a straightforward manner,

do'? (x
B D) aripoo
dx
— (2V9)'2 sech!(x/1). (4.50)
Thus
x/1
¢g)(x)=l(2V?)‘/2J dy sech’y, (4.51)

where the lower limit on the integration is unnecessary since
its contribution has been cancelled by ¢, on the left-hand

TABLE II. Static waveforms for the first six reflectionless kinks.

! $ (x)

1 4tan~!e*

2 tanh(x/2)

3 4tan~ ' e** + 2 sech(x/3)tanh(x/3)

4 jtanh(x/4)[1—} tanhz(x/4)]

5 4tan~" e + [4sech’(x/5) + 2 sech(x/5) ]tanh(x/5)
6

12 tanh(x/6) [1 — § tanh®(x/6) + ] tanh*(x/6) |
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. e t 1 i 1
00720740 20 00 20 40 60

FIG. 3. Static kink waveforms for / = 1 (SG), 3, and 5.

side. The indefinite integral of sech’y can be found in the
tables of Ref. 26. We present explicit forms for / up to 6 in
Table IT and in Figs. 3 and 4 we plot the waveforms for these
six reflectionless kinks.

The analytic properties of the parent potential V,(¢)
can be exhibited by considering its successive derivatives
near one of its degenerate minima. By construction, the first
derivative vanishes at ¢, or &,, and the second derivative
approaches unity at these values. The third derivative can be
obtained from Egs. (4.7) and (4.9) (or 4.32),

3
d :{;g‘ﬁ) _ :t\/_l+1 [VO]—I/I[V(¢)]1/I—1/2

V /71y /2
x[l-[ 1(¢)] ] .
Vi
As ¢ approaches a potential minimum from small |¢| values,

V,(4) approaches zero, so that

d3:;§¢) Y Rk} l+1 [V~ [V, ()]~
b2

(4.52)

(4.53)

and we see that for /> 2, the third (and higher) derivatives
are singular at the well minima. (This fact has been noted
previously by Christ and Lee'?.) Thus the parent potentials
for /> 2 do not possess Taylor expansions about their mini-
ma. Although the parent potentials and their first two de-

1.0
o.8F
o6k
o4r

02T
0.0F

-0.2F
-04f
-06l
_0.8 -
-1.0

g 1
-6,0 -4.0 -20 0.0 X 2.0 4.0 6.0

FIG. 4. Static kink waveforms for / = 2 (¢-four), 4, and 6.
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rivatives are continuous, the singularities in their higher de-
rivatives can be expected to cause difficulties in calculations
which incorporate these derivatives; for example: high-order
perturbation theories of kink response to external forces,”'°
“anharmonic phonon” contributions to statistical mechani-
cal quantities,>® and quantum renormalization'2"'7 of kink
energies. Nevertheless, if one is interested only in the lowest-
order “Gaussian” fluctuations about the kink solutions, the
parent potentials we have constructed in this section are
well-behaved to this order.

V. SUMMARY AND DISCUSSION.

In this paper we have obtained the formal solution [Eqgs.
(4.23) and (4.29)] to the problem of finding parent poten-
tials for an infinite class of nonlinear Kiein-Gordon kinks
which are reflectionless by virtue of the fact that they present
a modified Poschi-Teller potential of special magnitude to
the small oscillations (e.g., phonons). We found that these
parent potentials ¥;(¢) fall into two subclasses: for / odd
they are periodic functions of the field ¢ and the sine-Gor-
don potential is the first member (/ = 1) of this subclass; for
1even they have double-well structure, and the ¢-four poten-
tial is the first member (/= 2) of this subclass.

Although the SG-and ¢-four potentials are the only
members of this class which can be expressed as Taylor series
in ¢, the entire class of parent potentials enjoys (by construc-
tion) the very attractive feature that the spectra of small
oscillations about the kink solutions are known exactly (Sec.
III). This knowledge allows a rather complete construction
of kink-gas phenomenologies for the low-temperature statis-
tical mechanics* of the entire class, and the derivation of
generalized susceptibilities®'® of the kinks to external per-
turbations. These topics will be discussed in subsequent pa-
pers.
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A general construction of partial differential equations satisfied by the components of 7-
functions is given by considering the tensor products of modules. This procedure is applied to
the 4 {*-modules L(A,) and L(A,), leading to the Kaup equation and Sawada—Kotera
equation, respectively. Although L(A,) and L(A,) are of different level, one can consider
L(A,) ® L(A,), leading to so-called modified equations. This last construction is new, and
leads to a different choice of y, the variable that generates the equations.

I. INTRODUCTION

Some years ago, Date ef al.' and Jimbo and Miwa’
showed that solutions of many soliton equations can be con-
sidered as a group orbit of a highest weight vector v, of
L(A). Here L(A) is the irreducible affine Lie algebra mod-
ule with highest weight A.

In those papers these representations are found by re-
stricting representations of Clifford algebras to the Lie alge-
bra one is interested in. The purpose of this paper is to show
that one can do without these Clifford algebras of “fer-
mions.” The derivation of equations (in the spirit of Kac®) is
by considering tensor modules. In this way one is less re-
stricted in the algebra one wants to consider, and one has
more freedom in the representation under consideration.
Moreover, one gets a better insight into the 7-functions in-
volved.

This paper is an application and extension of Ref.4; here
we only consider 45" and 4 {».

Il. EQUATIONS CORRESPONDING TO A LIE ALGEBRA
MODULE

We explain how one can construct partial differential
equations corresponding to an affine Lie algebra g(4) and
certain realizations of integrable irreducible representations
L(A) (cf. Ref. 4). We take

2 -1 -1
A=| —1 2 -1
-1 -1 2

or

(L5 )

and A = A; throughout this paper.

Let g(4) have Chevalley generators e,...,e, and
JSos--» [ and a center Cc. Since L(A) is irreducible we have
w(c) = m Id, where 7 denotes the representation of g(4) on
L(A).

The principal grading & is determined by

Se)= —8(f)=1

Graded will always mean graded with respect to 8.
We suppose we are given a graded Heisenberg subalge-

(i,j=0,..,n).
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bra s in g(4) with basis { p,,g;,c} (i, jel CN) such that

[pisg;] =6,¢ and 6(p,) = —6(q;) =1i.
Moreover, we assume — wy(g;) = a; p; (a,€C), where w,
denotes the antilinear Cartan involution.

Let v, denote the highest weight vector of L{A). We
define the grading , on L(A) by

O, (m(g) w)= —5(g) + 6, (w), &.(vy)=0

[weL(A), geg(4)]. (2.1)
The module L (A) can be considered as an s-module; it will

split up in a direct sum of irreducible s-modules all isomor-
phic to each other:

L(A)y=® Recu;, R=C[x, iel],
Jj>0
(2.2)

T(p;) zmi®1, m(g;) =x;1,
Ix;

H

m(c) =mId.

Here 1 ® u; are the vacuum vectors of the irreducible compo-
nents, all with eigenvalue m. We suppose v, =1® u,. The
unique nondegenerate contravariant Hermitian form H, on
L(A) with H,(v,,v, ) =1 is very important for our pur-
poses.

To construct 7-functions we consider the group G gener-
ated by exp(w(te; )) and exp (7 (¢f;)) (i =0,...,n, teC). The 7-
function 7(g) is defined by

7(g)=gv, (gei).
To find equations satisfied by +(g) one considers
L(A) & L(A). This module is completely reducible. The
module generated by v, ®v, is denoted by L ;,,, [and iso-
morphic to L(2A)] and the submodule L 3,,,, by L, . Here

orthogonality is taken with respect to H defined by
How, v,oew,) =H,(v,,v,) H (w,w,). (2.3)

Since 7(g) ® T(g)€EL 1, We have

H(Z v, ®Ww,;, T(g)@T(g))ZO (Z Ui®wieLlow)'
(2.4)

We write these equations out in the realization (2.2), omit-
ting ® ;; and setting H,(u;,u;) = €;. For v = 2P, (x)u; and
w = 2Q;(x)u; we have
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H (vw) = H, (EP,- ()u;, Y Qj(x)uj)

=Y €,P.(mD,)Q;(x)|,_o, (2.5)
ij
where
5x =(alisa2_a—,'“)-
ox, " ox,
For v ® w we write
vew=Y P,(xMQ;(x")u, ey |
ij
and
(@) e7(g) =Y 1 XN, (xM)u, @ u,.
[ )
Changing variables
26, =xC +x{” and 2y, =x —x»
leads to
_ 43
Tem(p;) =m ax,’ Tem(g) = 2x;,
(2.6)

r®7w(c) =2mId.

We define Hir = L, NC[ y]. For 2; P; (y)u, ® u;cHir we
have because of (2.6)

Q(x) ¥ Py(»)u; ®uel,, for all Q(x)eC[x].

Substitution in (2.4), using (2.5), leads to
%I?u(%ﬁy) T (x+y)T(x —y)ey "€ 'y=0 =0, (2.7)

for 2, ; P;(y)u; ® u;cHir. These are the so-called bilinear
equations (equations in Hirota form, see Ref. 5) that we are
after.

Ill. DESCRIPTION OF A{" AND A®

We describe a realization of the derived algebras of these
two Kac-Moody algebras. Therefore we first consider
A,=s1(3,C). As a base for it we take

E1=E1,2» E2=E2,3: E0=E3,1’ H1=E1,1'—E2,2:

F1=E2,1» F2=E3,2’ F0=E1,3’ H2=Ez,2—E3,3-

As usual the commutator is given by [E;,Ey] =8, E;
— 6,E,;. We define the elements

Ml = (i/v3)(E1 —E2+E0)
and
M2= _i‘/3(Fl _F2+Fo).

We have [M,,M,] =0.
Further, we introduce with € =} + 1iv/3,

A10= —H1+€2H2’ A20= —Hl_eHz’
A, = —€Ey—E,+€E,, A, =€E,—E,—¢€E,
Ay, = —F2+62F1—€F0, Ap= _F2_6F1+€2F0'

These elements satisfy
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[Mk’Arj] =/1ikA.i,j+1: ’111 = —Ay=1,

Ap= —Ap=3

We define 4, = A, with k' =k (mod 3), k'{0,1,2}. We
get similar results for 4,,. Now we can describe the realiza-
tion of 4 {¥ in the following way. Denote

Ly= (HpH2>» L, = (Eo»EvE2>,
L,= (Fo,Fsz>-

As a vector space we take 4 {’ to be isomorphic to

(3.1)

o (L;et¥*+HeC-c
keZ
i=0,12

The Lie product is defined by

[gi@t*+Acg®t’ + 2]

= [gig] et T + (k/6)8;, _,1{81:82) e "C, 3.2)

(g::82)., denotes tr(g,g,), where g, and g, are considered
elements from sl1(3,C).
Now we introduce the elements

_[M,@t"‘ (m=1 mod 3),

M2®tm (m=2 m0d3), (3.3)
__[(l/m)M2®t"" (m=1 mod3),

T l(1/mM, @t =™ (m =2 mod 3).

m

Denote s = (p,,,4,,.¢), mel = {ieN|i0 mod 3}. Thisisa
Heisenberg subalgebra of 4 { with
[pm Wqn ] = %6,,,’"0.

Introduce

4;(2) =S (4 05z *
kez

This is not an element of the Lie algebra 4 {V’, but the homo-
geneous terms in z are. One easily calculates the folowing
brackets:

[pm’Aj (Z)] =ijmzmAj (Z),

3.4)
[9m:4;(2)] = (z="/m)A; _ . 4;(2).

Now it is easy to describe A4 2 as a subalgebra of 4 {"’. Intro-
duce the following subspaces of s1(3,C):

Vo= (H,+ H,),
Vo= (F,+F,),

V1 = (El —E2,E0),
V3 = <H1 —H2>’

Vs=(F, — Fp,Fp).

(3.5)
V4 = (El +E2>s

As a vector space we take A {2’ isomorphic to

& (V,et**)eC
keZ

J=0,..5

and the Lie product is taken as in (3.2).
After a calculation one finds
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H + H,= (1/V3)A,o + (i/V'3)€A,,,

H, — H,= €4,y — €Ay,

E —E,—E,+WW3M = — 24, + 24,,,
E, 4+ E,= (i/V3)EA4,, + (i/V3)ed,,

F,+ F,= (i/V3)€A4,, + (i/V'3)ed,,
F,—F,—F,—WW3M,= —%4,, + %A4-,.

(3.6)

IV. THE A{"-MODULES L(A,) AND EQUATIONS

Here A" has Chevalley generators e, =E, ¢,
fi=F,9t7' (i=0,12). Wedefinea; = [¢, f;], so

a,=— (H,+H))el+
a;=H, 91+ (i=12).

Now A, is defined by A, (24;a]) = 4,.

Here L(A,;) is the unique irreducible graded highest
weight module, with highest weight A;. Here graded is taken
with respect to 8, of (2.1). Denoting the subspace of degreej
by L;(A;), we can calculate the g-dimension of L(A;) [cf.
Proposition 10.10 (Ref. 3) ],

dim,L(A;) = ¥ dim L, (A,)q’

j50

=[[0 =g H 70 —g¥"" )7 =s(g).
50
Calculating the g-dimension in the realization (2.2), where s
is taken as in Sec. 111, we find

dim, L(A,) = ¥ s(q)g*,
50
so L(A;) remains irreducible considered as an s-module.
Therefore all Lie algebra elements can be represented as infi-
nite order differential operators. Using the relations (3.4)
we find

7(d;(2)) = ¢; (A, )exp( > /limz"’xm)

mz1

Xc:xp(— > Aim z""a_a__). (4.1)

m>1 m X
Moreover, since 7; (A ) vy =c;(A;)v,, we have ¢;(A;)
= A, (4;). One calculates that
(M) = — (i/V3)e and c¢,(Ay) = — (i/V3)€

As explained in Sec. II, we now can introduce Hirota poly-
nomials and r-functions. Since L(A,) is irreducible as an s-
module we have

7(x;8) = gv, €C[x,xp%,,... ]
Usually we do not write g in 7(x;g). The first nontrivial
equation in the form (2.7) is

(D} —3ID3)(r(x) 7(x)) =0,
where

|

|
T(X' +y)o(x —y)

(o4

DHr(x")-o(x)): = d

y=0

Here « is a multi-index (a,,&s,...,a; ) and y* =y -y~
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V. THE A?-MODULE L(A) AND EQUATIONS

In more detail we will perform the same construction for
the basic module L (A,) of 4 {*. The realization that we will
discuss can be found in Ref. 6. We use a different normaliza-
tion to find equations in a nicer form. Here 4 {*’ contains a
maximal Heisenberg subalgebra § of the following form:

Pm=[17(e"+D]T, ®1™,
9m = 2/m)(e"+ DT _, 0t~ ™
(m= +1 mod6),
where
_{EO+E1—E2, m=1 (mod 6),
Fo+F, —F, m= —1 (mod®6).

Note that s N 45> =§ and wy(§,,) = (6/m)p,,. As Che-
valley generators of 4 {* we take

eo=E,2t, & =v2(E, —E,),
fi=Fyet~', f,=v2(F —F,),

weuse to distinguish these elements from the generators of
A Y. We find

as =lenfol = — (H,+H,) 81 +}c,
&llj = [EI’}]] :2(H1 +H2) ®1 —i—%c.
Calculating the g-dimension of L(A ), one finds

m

dim L(A) =J] (1 —¢¥" )71 =g+ )~ = r(g).
>0

Since 7(¢) = I1,,, (1 — ¢’) ~ ™%, we see that L(A,) re-

mains irreducible as an §-module. The uniqueness of highest

weight modules of Heisenberg algebras then gives that we

can assume that the action 7 of p,, and g,, is

T(Pm) = » 7(qy) =%, w(c)=1Id,

and (5.1)
L(A))=C[x,x5,X5...].
To extend this representation 7 to all of 4 {*’ we introduce

—1 1 1

A= —¢€ € €

€’ —€

esl(3,0).

J— Ez

We can split up 4 in homogeneous components with respect
to the grading of (3.5). We then find 4 = 3 _, A;, where

A, =1%iv3e(H, + H,),
A = —3€(E,—E,~E,+1iV3M)),
A, = —1iW3(F, + F,),
A= —le(H —H,), (5.2)
A= —LiV3E(E, + Ey),
As= =3 (Fy—F,— Fy—~{iv3M,).
Introducing
A(Z):z (Aj®tj)z/j (Aj:AjmocIG)’
JjeZ
we find
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[PmA(2)] =2"A(2),
SO

A(2)) = a-exp (2 z'"x,,,) exp(— Z iz”":ﬁ:—) )

1 m>1 M

[gm:A(2)] = (6/m)z~ "A4(2),

where the sums are only taken form = + 1 (mod 6). From

the formula one finds
. _; 6 0
(Ad_;8t™’) =GZP1+1(XM)P1 (_;1-3;:)

Here p, (x) denote the Schur polynomials defined by

exp (;1 x,z’) =Y pi(x)Z"
>

Since 4,8 1 = (iIV'3/12)e(d} — 4ag) wefind (4,9 1) 1
=q-1 = (iv3/12)e.

Now we can turn to the construction of the equations.
We introduce the module L{A,;) ® L{A,) and the action
i ® 7 by

(Fe®)(@)(reow) =7 (gvew+veF(gw.
The grading 6, is extended by &, (vew) =45, (v)

+ &8, (w). We work in the realization (5.1), and an element

P(x) ® Q(x) will be written as P(x*)Q(x").

Introducing

5 =400 57 and 3, = 4050 =),

one finds
(FoM () =2,
0%,
(7o7)(q;) =2X

5, (Tew)(c) =21d.
Moreover
(Fe)(4_;8t )

- 3 ad aJ
=aq {ZP;H(Xm + ¥V )i (—;(35&_4“5—))

- 3( 4 d
+ ij+l(xm —Ym P (—;1_(5—__6}—))}

Denote by Ly, the A{»-submodule generated by
Vs, ®U,, = land L,,, = Ly, . Here listaken with respect
to H defined by (2.3) and (2.5). Note thatinthiscases; =0
(i>1),s0€; =08;6,. Moreover, a; = 6/iand m = 1.
We calculate the interesting g-dimensions. We know
dim, [L(A)®L(A))] = {dim, L(A)} =P (g).

Since L, =L(2A,) we find using Proposition 10.10 from
Ref. 3,

dimq Lhigh =II (1 —-qj)w1
i1

,H(l _q10j+4)(1 _q101+6)

j»0
X(l _q10j+10)(1 _q6j+3).

SinceL(Al) ®L(A1) =Lhigh ®Llow we have
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dimq Llow = rz(q) —_ dimq thgh'
Finally, L, = Hir® C[X], so we find

dim, Hir = r(g) — r~'(g)dim, Ly

=r(q) — H(l _q10j+2)-—1(1 __q10j+8)—1
>0

=q++2°+¢+

= dim, C[y] — dim, 0,

where Q) = L, NC[y] represents the space of constraints.
Since we have only odd variables we have only nontrivial
equations for elements of Hir with even degree (see Ref. 5).
So the first nontrivial equation is of degree 6. Here there is
one constraint. Calculating

(FRT)(A_s®t 51
=a{ps(X + ) +Ps(Fm —Vm)}
one finds Q¢ = ((1/61)y5 + y, ¥s).
Suppose @y$ + By, yscHir, then we know
H(@Y} + By, ys,(1/60y% +3,y5) =0
=a-(4)°6°+ B(1)*-6-§=0.
From this one finds
(D] — DyDs)(r (%) 7(%)) =0.

Vi. THE AQ-MODULE L(A,) AND EQUATIONS

We can consider the 4 {-module L(A;) as an 4 {¥-
module. The submodule L generated by ¥, €L(A,) is irre-
ducible, which one can prove using the grading and the Her-
mitian form H, on L{A,). One easily calculates

7, (Z ﬂ.i&;’) “Wp, =Ao Vs,

soL=L(A,) asan4 {¥-module. From now on we mean this
L(Ay), if we write L(A,). Since L(Ay) =L, L(Ay) can be
realized as a subspace of C[x;, i0 mod 3]. We also can
write down the explicit form of the action of elements of 4 {¥’
by using (3.6) and (4.1), and in particular

{m= +1 mod®6).

To( Pm) = s To(gm) =X

ox,,

We consider L(A,) as an §-module. Since

dim, L(Ay) = ,-(q)H(l —gl¥ Ty TI(] — g+ 6yt

i»0

=rig){l+4*+¢°+ "}

we see that L{A,) does not remain irreducible as an §-mod-
ule. We introduce therefore ug = 1, u, = X3, t, = X,X4y-.. -
As before we define L 5, in L(Ag) ® L(A,) and Hir. Since
L yign =2 L(2A,) we find

dim, Ly =r(q) H‘(l —gl¥+2)—1(] — gl¥+8y-1
70
and .
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dim, Hir = r(g) H (1 —g°+")~2(1 —g'%+¢)~2
i»0
_ H(l _q10j+2)-—1(l _q10j+8)—1
Jj>0
=9+ +2¢"+3¢ +4¢°+ .

Again we have O = G[y] NL .

Analyzing Hir in graded subspaces Hir; we find for
j = 1,3,5 only elements leading to trivial equations, for ex-

ample, Hir; = { 33 u, ® u,). Forj = 4 there is one constraint
and one nontrivial equation. Calculating

(mo@m)((fi+f) et el

we find w, =1y ug®uo+ 9(u; @ uy + uy®u,)€Q, which
leads to the equation

D (1o(x) 1o (x)) — 4 To(x) 7y (x) = 0. (6.1

For degree 6 there are two nontrivial equations, of which one
contains only 7, and 7,. There are also two constraints

W= ho Vo ® Uy + 31} (U @ Uy + Ug @ Uy)
+ 12y, ysup @ uy + 6(u, @ uy + uy @ us),
wf =1 ug®uy— W (U, ®uy + uy® ;)
+ 36(u, @ uy+ u®u,).
We find
(D? “!3§D1D5)(7'0(x)'7'0(x)) +3§’D%(7‘0(x)'7'1(x)) =0.
(6.2)

VIl. SPECIAL TYPE OF MODIFIED EQUATIONS

We have constructed two 4 $¥-modules L(A,) and
L(A,), in a realization in which the Heisenberg algebra §
acts canonically. We can now consider L(Ay) ® L(A,) to
find equations connecting the two hierarchies found before.
Note that L(A,) is reducible and L (A,) is irreducible as an
§-module. We denote u,eL (A, ) by #, and also 7y (x) by 7(x).
Since

dim, L(Ao+ A,)

ZV(X) H (1 __q2j+l)—1(l _q12j+2)(1 __q12j+10)

Jj>0
we have
dim, Hir=r(q)H (1— g ¥+ ~1(1 — g% +6)—1
Jj»0
_H (1 _q2j+1)—1(1 _q12j+2)
j>0
(1 — g'%+10y

= Y dim, C[ ylu; ® u — dim, Q
i»0
=g +4¢"'+24+ ).
Recall the elements p,, ,¢,, (m = + 1 mod 6) introduced in
(3.3). Their action in L(A,) ® L(A,) is
a a3

©) m )]
ax,, Ox})

(T @) (q,,) = x5 + Bxi,

(me®T) (P ) =

H
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where
a,, =(/vV3I)(e+1) (m=1 mod 6),
a, =iV3(e—-1) (m= —1 mod6),
and
B, =1/2a,,.
Now define the elements x,, and y,, by
X =307 +Bnx)s Y =3(x = 2B,,%7),
then

(roe ) (p) =~ -9 and (me@#)(g,)=3x,.

xm

Now we can calculate the constraints and the Hirota polyno-
mials. For degree 2 there are nonzero elements in C[y]
ML g1, S0 we find

y2ug® ucHir
and
D2{ry(2x) T(x))=0,

where 7(x)=7(8%), B=(B,B..), and
= 7(BX;g) as defined in Sec. II.
For degree 4 we have to calculate the highest order part

T(BX)

of

(me@ (i + /)8t ") ugou)
yielding

O, = ((I/8)ytugeu —3u, ®u)
leading to

Di{ro(2x) 7(x)) + 37 (2x)7(x) =0,
which is a consequence of (7.1) and (6.1).

Finally, calculating

(mo®7)((e, —e; —eg + 3V 3M,) ®1 ) (uge u)
leads to

s = (L Viug®u+ 6pu, ®u+ 6ysu, ®u)
yielding one equation in 7, and 7,

(D3 —2Dg)(1y(2x) - 7(x)) = 0.

VIil. DISCUSSION

In Secs. IV-VI we found three hierarchies of equations.
The first one (in Sec. I'V) is the well-known Boussinesq hier-
archy and needs no further discussion.

The second hierarchy (Sec. V) is a hierarchy of which
the first equation is the Sawada—Kotera equation

u, = (U + 15un_ + 154%),

u=2d logr, t=%, x=%,.
The construction given here corresponds to reduction to
A §? of the BKP hierarchy (cf. Ref. 2). One also gets this
equation by considering L(2A,) ® L(2A,) (cf. §8 and Table
4 of Ref. 2).

The third hierarchy (Sec. VI) has as its first equation

the Kaup equation (see also §8 and Table 4 of Ref. 2),
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u, = (Uyprr + 1500, + 150> + $u2), =0,

u=d. logr, t=x5, x=2x,.

Here we see the explanation of the substitutions

J T
ax% ¢ X, =Xg=..=0
in Ref. 2, where 7, is the 7-function of the KP hierarchy. In
our context these variables are not real variables as they do
not occur in the Heisenberg algebra §.

In Sec. VIII we find a transformation connecting those
two hierarchies. Setting

To Xy =Xy = .. =0 and

v(x) = 3, log(re(2x)/77(x))
we have
0, = (Vypnn + Wrly — S0, 0 — 5020+ 0%),, (8:1)
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an equation also occurring in Table 4 of Ref. 2, but here
found as a relation between the hierarchies of L(A,;) and
L(2A,). Inview of the relation (6.7) of Ref. 2, the square in
(8.1) need not surprise us.
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The prolongation structure approach of Wahlquist and Estabrook [J. Math. Phys. 16, 1
(1975) ] is used effectively in a new situation in relation to the integrodifferential type BO
equation (the Benjamin—-Ono equation). The main clue lies in the possible differential equation
representation of such equations in three dimensions. Here it is shown how the usuval analysis
of prolongation structure can be utilized to deduce a Lax pair for a BO type equation in three
dimensions. Effectiveness of the present approach is further demonstrated by an independent
derivation of some conservation laws associated with the equation. Last, the whole formalism
is reduced to two dimensions to make contact with known results.

I. INTRODUCTION

Very recently, it has been demonstrated by Grammati-
cos et al.' that a purely differential type representation is
possible for a Benjamin-Ono (BO) type” integrodifferential
equation by introducing a new independent variable y as any
extra space coordinate. On the other hand, it is possibie to
revert to the usual integral form of the BO equation by solv-
ing the auxiliary equation on the boundary y = 0. These
authors felt the need for such a representation when they
tried to make a Painléve test for the BO equation. Here we
show that such a representation in three dimensions can be
further utilized to derive the IST equation of the BO equa-
tion by following the methodologies of Wahlquist and Esta-
brook.? The technique of Wahlquist and Estabrook was ex-
tended to three dimensions by Morris.* Here we give a
generalized form of prolongation analysis in many dimen-
sions and then apply the technique to our case. The method
is quite effective in yielding the Lax pair and the conserva-
tion laws related to the BO equation. In the last section we
show how to go back to the physical two-dimensional space,
by using the ansatz of Grammaticos et al.

Il. FORMULATION
The BO equation is written as
ux'x' (x’)

X' —x

u,+uux+—£f dx'=0. ()
T

It has been proved in Ref. 1 that Eq. (1) is equivalent to the
following set in three dimensions:

Uy +u,, =0, u, +uu, +u, =0, (2)

under proper boundary conditions. The integral term reap-
pears if we solve the first equation of (2) by the Green’s
function approach and substitute in the second equation of
(2). To proceed with the prolongation analysis in three di-
mensions we define the independent variables

® Permanent address: High Energy Division, Department of Physics, Ja-

davpur University, Calcutta-700 032, India.
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U, =p, u,=r. 3

Then the following three forms are seen to be equivalent to
(1) under proper sectioning:
a,=dulNdyANdt —pdxN\dyAdt,
a,= —dulNdxNdt —rdxN\dyNdt,
ay;=dpAdyA\dt —drANdx N\dt,
a,=drANdyNdt +up dx Ndy Ndt +du/NdxN\dy .
Here we first indicate the necessary steps for the prolonga-
tion analysis in higher dimension in complete generality and
then apply them to the set (4). In n dimensions we can sum-
marize by stating the following.

(i) If the nonlinear equations are equivalent to the dif-
ferential forms a,, a,,...,,,, all (n) forms

a"=(1/n!)a/’jl#2..‘“" dx*" NdxX** N\ - Ndx . (5

(ii) They satisfy the closer condition

da'cCl, I={a'}. (6)

(iii) Then if we introduce the prolongation variables y’s
and the (» — 1) forms

Q=B N, i=123,..,dimy’, 7

the /3"1. are (n — 2) forms to be determined:

(4)

i __ 1 i 1 2... n—2
j_mb‘ﬂwz'“#n-zd'tu /\dxu /\d-xu )
(8)
with @’ the connection one-form defined as
wi=dyi+z A*dxX . (9)

(iv) We now then again impose the closer condition on
the extended set I’ = {a’, O’} in the form dQ'CI’, which
will fix up the corresponding structure of the prolongation
algebra. In our case, these equations are specialized as fol-
lows:

o' =dy+F'dx+G'dy+ H'dt, (10)
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where F', G', and H' depend on (u,p,rx,p,t,y; ) and
Q= (ajdx+bidy+cldt)No, (11)

where af, b }, and ¢} are constants matrices satisfying the
commutation rules

[a.,6.]=0, [bf,ci]=0, [cl,a}]=0. (12)
From (9) and (10) we obtain
O/ = a} dx AdyX + b i dy Ady* + cf dt ANdy*
+L7dxANdy+ M7 dtNdx + N’dtAdy, (13)
with
L/=aG/~bF/,
Mi=cF/—aH/, (14)
Ni=c¢G’/—bH’.
Hence we have by exterior differentiation
dQ/=L/}, do, N\dxNdy + M}, do,, NdtNdx
+ N}, do, Ndthdy. (15)
Here, 0, stands for the set
o, E{xd’,t’}’x, U,PJ'} .
We now demand
A0/ =Y afl + (Adx+pdy+vdAQ'.  (16)
Equating  coefficients of  different  three-forms
dp Ady Adt, dr Adx Adt, etc., we get
va' —Aci=M,, vb'—nc’=N,, Ab/—na’=L,.
an
Furthermore, we have
N,=-M, N, =-L,,
along with
PN, —rM, — upN,
=AN—-qM —vL +L,+ M, —N, . (18)

Now as in the case of two-dimensional theory we demand
that our prolongation equations will be independent of ex-
plicit coordinate dependence. So the above equations reduce
to

pN, —rM, —upN, =AN —nqM — vL. 19)

We now make an interesting observation that one can
make a possible choice of the form

AN —9M —vL=NM, —MN, =[N, M}. (20)

. Hence finally our equations are

N=-M,, N=-L,,
PN, —rM, —upN, =[N, M] .

Then the inverse scattering equations pertaining to the set
are

@2n

gx = ——M§——a§,, §y= -—N§-—b§,,

2
af, — bk, = — L, . 22)

It is now necessary to impose some conditions on the
matrices g and b as done by Morris.* In our case these condi-
tions are

la,6]1=0, [N,a]l+[bM]=0. (23)

Let us now set

M =x,(y;) +x,(p;)u + x;(y;)r,
N =x,(3;) —x30)p + X5 )t + x6(¥, )% + %,(p)r

(24)
in Eq. (21) to get
[xp %3] = — x5, [%3,%x5]1=0,
[ %3] =% — 2x;,  [%5, %] =0,
(%5 %] + [x0 %] = — X5 [%3,%,] =0, (25)
[x1, x5] + [x2 %] =0, [x3, %] =0,
[x x6] + [x2, 51 =0, [x5 %] =0,

which is the resultant incomplete Lie aigebra. Now to close
(25) we make the identification
xs = Kx3, x-,r = 2x6 .

Then the above set of commutators will reduce to

[xp 23] = —Kx3,  [x3, %] = K’x,,

[x5, %31 =0, [x5,x6]=0,

[x5 x4] =0, [x3,%]=0, (26)
[x, % =0, [x3x]=0,

since their use of Jacobi identities yields
[x4 X6] = X6 .

So we have obtained a closed 5 5 Lie algebra whose explicit
realization in the regular representation® yields a Lax pair

[x), x2] = — Kxy;

A=~—F,, v=-H,, n1=-G,, with 5% 5 matrices, if we can solve Eq. (23) for a and b.
so that | First, we note that the matrices M and N have the form
0 0 0 0 o 0
Ku —K 0 —r 0 0 0 1 r—Ku 0
M=|Kr 0 -—-K Kum 0}, N=|Kk%u—-Kp —K2? 0 0 0 @n
0 0 0 0 0 0 0 o0 0 0
0 0 0 0 0 0 0 0 —(u+2rn 1
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When this M and N are used in (23) we obtain

(28)

b = 55 unit matrix, so the Lax equations in three dimen-
sions can be explicitly written as

£.=0, &= —Kuf'+KE*+r8",

£1= —Krg' +KE —Kug*, (29)
§:=0, §i:§f’
and
£y=¢1, &=~ @-Kng'+l,
£ = —(Ku—Kp)§' +K*6°+¢7, (30)

Ey=¢E1 =@+t -8,

Now a transition to the usual space-time variable of
(x, 1) ismadeif weuse U, = TU,  orrf =T, » and eliminate
the redundant &,’s.

1. CONSERVATION LAWS

We now again call back our prolongation equations
(19) and (21) to show that the independent derivation of
some conservation laws can be made in our present formal-
ism which were previously obtained by Chen and Lee.®

Let us for the time being drop the prolongation variables
&.’s and keep the (x,p,t) dependence. Then Eqs. (18) are
changed to

N,=-M,, NN=-L,,

pN, —rM, —upN, =0=L, 4+ M, — N, .

Now a conservation law in three dimensions is of the
form

IL M I(=N) _

at  dy Ix
with L the density and M, ( — N) the components of cur-
rents, so that different conservation laws correspond to dif-
ferent solutions of (31) satisfying (32). It is not very diffi-
cult to show that one such solution set is given as

31

0, (32)

L=-2au+a,, M=a,+au,, 13
N=a,—au, + (u* +2u)a,, (33)

where @, are arbitrary constants. To generate more such

conservation laws we follow the usual trick of demanding
the closer of d(} even when we consider some derived conse-
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quences of equation set (2). To illustrate the method we
consider x derivative of (2), that is,
uxxx + ux = O >
; vy (34)
uxt + ux + uxuxx + uxxy = 09

which are equivalent to the following sets of differential
forms:

as= —drAdxANdt —sdxNdyN\dt,
as=dgNdyNdt +dsNdyNdt,

(35)
;= —dgNdxA\dt + (u + p*)dxNdyAdt
+dpAdxAdy,
with U, =s.
If we now demand
7
dQ = Z fiai,
i=1
then we obtain
L=au+au, +as,
M =éu, +au,, +d, (36)

N= —agu,, —auu, —au" —agu,, .

The two-dimensional form of the conservation laws can also
be obtained by the same prescription as noted before.

In the above analysis we have indicated a methodical
application of prolongation theory to the partial differential
equation involving integral terms. The method is extensible
to similar other completely integrable equations.
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Distinguished involutions called transposition and conjugation in the algebra of complex
supernumbers are introduced. On the base of these involutions an analysis is developed over
complex superspaces. Consistency of integration under supertransformations between two

complex superspaces is shown.

1. INTRODUCTION

In our previous paper’ we studied analyses of functions
defined on generalized superspace, that is, differentiation
and integration of functions in o-commutative variables.
There we treated only the real superspace over a real o-com-
mutative algebra, where the values of the sign function o are
constrained to + 1. Over the complex field the values of o
are, in general, nth roots of 1 and therefore it is important to
consider the complex superspace to treat functions in vari-
ables with general o commutativity. And, of course, com-
plex superspace plays an essential role in quantum field the-
ory (Berezin?).

To develop an analysis on a complex superspace over a
o-commutative algebra 4, it is necessary to define suitable
involutions (conjugation™ and transposition *) in 4. The
involutive structure of complex superspace induced by the
transposition * makes it possible to define differentiation and
integration of superfields in a similar fashion as we did in the
real superspace. And, moreover, Taylor’s expansion and the
standard expansion formulas take more convenient forms in
terms of transposition on complex superspace.

A striking aspect of our theory is a consistency theorem
that asserts that the measures of superspaces are adjusted by
the superdeterminant of the Jacobian matrix of a mapping
between two spaces indexed by, in general, different index
sets. In the real case, the consistency in this sense holds only
within the same superspace (see Ref. 1).

In Sec. II we study involutions in o-commutative alge-
bras in general, and introduce a special involution * called
the transposition on the algebra of complex supernumbers.
By finding an appropriate factor system we can define an-
other involution™ called the conjugation associated with *.

In Sec. III we introduce the complex superspace with
involutive structure induced from * and ~ given in Sec. IIL.
We study differentiable functions (G functions) on com-
plex superspace Z along the method of Rogers® and give a
standard expansion formula for the functions. In virtue of
this standard expansion a G function on Z is naturally
extended to a wider space dbl(Z) called the doubling of Z.

In Sec. IV we investigate integration of functions first on
the body and next on the whole complex superspace. We
obtain our main theorem about the consistency of integra-
tion. We prove the consistency of integration on the space
dbl(Z) because dbl(Z) admits more general variable
changes than Z does and it makes the proof simple. The
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result on the space Z is obtained as a corollary of this general
result.

Some properties of determinant of matrices over a o-
commutative algebra, which we need to calculate the Jacobi-
an, are given in the Appendix.

Throughout the paper G is a finite Abelian group witha
sign o, that is, o is a function of G X G to the complex field C

satisfying

og(a+B,y) =o(a,y)a(By) for aByeG,
and

g(aBloBa) =1 for apeG.

Ii. INVOLUTIONS IN o-COMMUTATIVE ALGEBRAS

Let A = @, A, be a o-commutative G-graded alge-
bra over G, for any aed,, and bedg, ab = o(a,f)ba.

A mapping *: A — 4 is an involution of A, if it satisfies the
following:

(1)a**=a for aed;

(2) (@a+b)*=a*+b* for abed,

(3) (ca)* =ca* forceC and aed,
where ¢ means the complex conjugate of c;

(4) (ab)* =b*a* for abed.
If moreover it satisfies
(5) a*ed, forany acd, and a<G,

then * is called a conjugation of A. On the other hand, if it
satisfies '

(6) a*ed _,

then * is called a transposition of A.

Let 4 and B be a o-commutative algebras with a conju-
gation (resp. transposition)*. On the graded tensor product
A ® ¢ B we define * by

(aeb)* =0(Ba)a*eb*
for aed,,, beBy, aBeG. 2.1)

Then * is a conjugation (resp. transposition) on 4 ® ¢ B.
Let ¥ be a G-graded vector space over C. A mapping
*. - ¥ is an involution of ¥, if it satisfies (1)—(3) above
with 4 replaced by V. It is called conjugation or transposi-
tion according as it preserves or reverses the grade. Let C{ V]
be the o-symmetric algebra of ¥ over C, which is, by defini-

for any aed,, and a€G,
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tion, the quotient algebra of the tensor algebra T(V) of V'
over C modulo the ideal generated by the elements
vw — o(a,Blwv with veV,, we Vs, and a,B€G. An involu-
tion on V is naturally extended to the C[¥] as follows: For
ceC and v,,...,v, €V, define

(cvy v, )* =cv¥---v¥, (2.2)
and extend * additively to C[ V]. The extended * is a conju-
gation (resp. transposition) of C[ V], if so is the original *.

We decompose G into a direct sum of cyclic groups;
G=G,, & &G, where G, is a cyclic group of order
n;. Let a; be a generator of G ;, . As was discussed in Ref. 4,
the sign o is given as follows on G. For integers 1<, j<n, let
Ay bein Csuch that 4, = 1/4,, (4,)"=(1;)" =1, and
A; is 1 or — 1 according as «; is even or odd. Then for
a=lha + - +la,andB=ma,+ -+ m,a,inG,o
is given by

o(aB) =[] 4"
[

Let G, = {aeG |o(a,a) = 1} be the even part of G. A
factor system ¢ associated with the even sign o, = |, . 6, Of
G, is a mapping of G, X G, to C — {0} satisfying

() ¢(aB+1)I(By) = d(a.B)d(a +B,y),

(ii) o(a,B) = ¢(a.B)/d(B.a),

for any a,53,y€G,,.
We define a mapping ¥: G X G—C — {0} as follows:

wap) = I 4,
for a = 3l,q, z;r<1]d B =Z2m;a;in G. By definition this ¢ is
bimultiplicative, that is,

la +By) =@ By,

Yap +y) =d(ap)i(ay),
for a,B,y€G. So ¢ satisfies

v(afB +1vBy) = (e (a+ By),

and

¥(a,0) = ¢(0,a) =¥(a.B)Y( —a,)

(2.3)

(2.4)

=y(aP)Y(a,—B) =1. (2.5)
Moreover, by (2.3) and (2.4) we have

for a,BeG and specifically ¥ (a,3)/¥(B,a) = o{a,B) for
a,BeG,. Thus ¢, = 9|g, ¢, is a factor system associated
with o, This factor system was defined by Scheunert.?

In order to simplify our calculation we need to introduce
another factor system associated with o, First we define a
mapping #: G—C — {0} as follows:

Ha) [¢(B,B)2 with @ =28, if a€2G,
a) = .
\/W} lf aEG - 2G’

where z + {0 means yre”? for z = re with — 7 <6<
We claim that ¢ is well defined. In fact, if 28 = 2y for
B,yeG, then

V(BB =v(2B,B) =¢(2y.B) = Y(¥.B)*
=Y(1,.2B) = v (7,.2y) = ¥(y,¥)>%
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By the definition of ¢ we have

10) =1, Ha)=t(—a), t2a)=i(aa)?

ta)? = Y(a,a), 2.7)
for aeG. Now we define ¢: G X G—C — {0} by

d(a,B) = [t(a)t(B)/t(a + B) ¥ (a,B) (2.8)

for @,BeG. Then ¢, = |, ¢, is a factor system associated
with o,, and moreover ¢ has the following properties:

$(a,0) =¢(0,a) =d(a,a) =d(a, — a)

=¢Q2a,—a) =1, (2.9)
¢(—a,—p) =d(ap), (2.10)
¢(aB)g(Ba) =1, (2.11)
d(a,B) =d(a,B)/$(Ba) = + o(a,B), (2.12)
$(2a,23) = o(a,B)?, (2.13)

for a,BeG.

In fact, (2.9) and (2.10) follow from (2.5), (2.7), and
(2.8), and (2.12) follows from (2.6), (2.8), and (2.11).
Now we show (2.11) and (2.13). For a,8¢G we have

$(ap)d(Ba) = [t(a)t(B)/t(a + B) ] (aB)
X [t(B)t(a)/t(B + a) J¥(B.a)
= [t(@)*t(B)*/t(a + B)*1¥(a B¢ (Ba)
= Y(a,)Y (B Y(aB)Y(Ba)
X¢pla+Ba+B) "

=1
For a,3cG we have

6 (2a,28) = [tQa)t(26)/t(2a + 28) ¥ (2a,2B)
= [P(a,a)*V(BL) /Y (a + Ba + B) 1Y (ap)?

= [Y(aB)/P(Ba)’] = o(aB)’.

Since |o(a,fB)| =1 it follows from (2.12) that
l¢(a.3)| =1 for a,[eG.

Let Cbe the crossed product of G, and C associated with
the factor system ¢,, that is, C is a direct sum of one-dimen-
sional vector spaces over C with generators u,, @G, such
that u,us = ¢(a,f)u,, ;. Then Cis a o-commutative al-
gebra over C. Furthermore, by (2.9) we see that u, is the
identity element of C, every u,, is invertible and

w,'l=u_,. (2.14)

a a

Remark 2.1: In general, the group of even signs of G
over C is isomorphic to the cohomology group
H?(G,C — {0}), which is, by definition, the group of equiv-
alence classes of factor systems of G. Two factor systems ¢
and 1 are equivalent if there is a mapping #: G—C — {0}
satisfying the equality (2.8). The crossed products associat-
ed with equivalent factor systems ¢ and ¢ are isomorphic. It
is also known that we can choose, from every equivalence
class, a representative that is bimultiplicative (see Yama-
zaki’®). Actually, Sheunert’s factor system 1, is bimultiplica-
tive. Our factor system ¢,, which is equivalent to #,, is not
bimultiplicative but has the good property (2.13), which
makes our calculations simple as will be seen below.

Next, let G, denote the odd part of Gand let L bea G, set
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(a linearly ordered G,-graded set). Let ¥ be a G,-graded
vector space with generators v, JeL, such that the grade of v,
is g(I). Let B be the g-symmetric algebra (the generalized
Grassman algebra) of ¥ over C. The graded tensor product
A =Ce B of Cand B which were constructed above is a
finite-dimensional o-commutative algebra over C. Elements
of A are called (complex) supernumbers. In the subsequence
of this paper this algebra 4 of supernumbers is fixed.

Now we shall determine all the conjugations and trans-
positions of C. We need the following lemma. Since
C, = Cuy isisomorphic to C, Cis considered to be a subalge-
bra of C and of 4 as well.

Lemma 2.2: Let f(X)eC[X] be a nonzero separable
polynomial, then all the roots of f (X) in 4, are in C.

Proof: Since f is separable, f(X)=(X-—¢,)
XX —c¢;) (X —c,), where ¢;eC are all different. Let
acd, be a root of f(X), that is, (a-—c¢)
X(a—c,) " (a—c,)=0.Theais written as a = a, + 5o,
where a,€C and s, is nilpotent. Since the c; are different, the
a, — ¢; are nonzero except for one index, say i,. Then the
a — ¢, for i#i, are invertible and so we get a = ¢, €C.

Proposition 2.3: We have the following.

(i) If ~ is a conjugation of A4, then there is a homomor-
phism ¥ of G, to C(in other words ¥ is a character of G,),
such that

u, =y(a)u, for aeG,
(ii) If * is a transposition of 4, then there is a homomor-
phism ¥ of G, to {1, — 1} such that

w*=y(a)u_, for acG,.

Proof: Let ~ be a conjugation of 4. Set y(a) =u_, u,.
Then by (2.10) we have

y@)y(B) =u_, W u_gug =u_gu_, Ugl,
=¢( —B’ _a)u—a—ﬁ ¢(ﬂra)“a+ﬁ

=U_qu_p Uyyp =V(@+h),

for a,BeG,. Therefore ¥ is a homomorphism of G, to A4,.
Hence for any aeG, of order n, we have y(a)" = y(na)
= y(0) = 1, that is, y(a) is a root of the separable polyno-
mial X" — 1. By Lemma 2.2 we see y(a)<C. It follows that ¥
is a character of G, and u, = y(a)u-} =y(a)u,.

If * is a transposition of 4, then set ¥(a) = u,u?. Then
in the same way as above we see ¥ is a character of G, and
u* = y(a)u_,. Since

= (y(@u_, P = @t , = Ha)y(—a)u, =u,

we have y(a)>=1/¥(a)y(—a)=1, which implies
ya@)= t L

Let * be a transposition of 4, then by Proposition 2.3
(ii), we see u®* = +u_, for any acG,. If u} =u_, holds
for every aeG,, * is called standard.

Proposition 2.4: If * is a standard transposition of 4, then
the additive mapping ~: 4 -4 defined by

for aeG and aed,

is a conjugation of 4.
Proof: First note that (2.15) makes sense, because 2« is
in G, for any aeG. We have by (2.14)

(2.15)

a=u,,a*
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i
b
I

a = Uy, (W,a*)* =w,,quf, =au,,u_,, =a,
for aeA,, . Moreover for ac4,, and bed,, by (2.13) we have
ab =u,, ., (ab)* = $(28,22) ~'uypu,, b *a*
=0(a,B)0(2a, — B)u,pb *uy,a* = ba.
Thus ~ is a conjugation of 4.
The conjugation ~ in Proposition 2.4 is said to be asso-
ciated with the standard transposition * of 4.

Now we define a transposition * of 4 as follows. For ceC
and aeG, define '

(Clla ) *=Cu —a?
and extend * additively to C. Then, * is a transposition of C,
as is readily seen from (2.14). To define a transposition of B,
suppose the G, set L used to define B has a transposition *,
thatis, * isamapping from L to Lsuchthatg(/*) = —g(])
and /** =/ for all /eL. Then the G-graded vector space V'
defined by L has a transposition * induced from the transpo-
sition * of L; (cv,)* = ¢v,. for ceC and leL. Now the o-
symmetric algebra B of V over C has the transposition *
given by (2.2) and 4 = C® B also has the transposition *
given as (2.1). Let ~ be the conjugation of A4 associated with
*, Then by (2.9) we have

u, =u, for acG,,
and

Var = Uoeqary ® Vages
where M ={1,,..,1,,}CL, Vpy=v, v, , g(M)=g(l,)
+ 0 +8(Ip), and Vare =Vy0 V. In this paper the
transposition * and the associated conjugation ~ play impor-
tant roles.

lil. COMPLEX SUPERSPACE AND DIFFERENTIABLE
FUNCTIONS

As we stated in Sec. II, A is the algebra of complex su-
pernumbers with the transposition * and its associated con-
jugation ~. Also A4 is a Banach algebra with a suitable norm
(see Ref. 1). In our previous paper’ we developed differen-
tial caluculus over the real superspace. In this section we
study differentiable functions defined on superspace para-
metrized in A. To accomplish this we first decompose 4 into
the real and the imaginary parts.

For aeG we define the real part Re(A4,, ) and the imagi-
nary part Im(4, ) of 4, by

Re(d,) ={aed,|d=a}, Im(4,) ={aed,|da= —a}.
Then we have

A, =Re(4d,)eIm(4,) and Im(4,) =iRe(4,),

where i =y — 1. Thus an element ce4,, is written as
¢=Re(¢) +Im(c) =a+ib with a,beRe(4,). (3.1)
Let I ={1,...p,p + 1,....p + q} be a G set such that g(i) are
evenfori=1,..pandoddfori=p + 1,....,p + ¢q. The direct
sum Z = @, 4, is called the (generalized) complex su-
perspace over A. Here Z is decomposed as follows:
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Z= o (Re(dy,) @ 1m(4yqy)

= (SIRe(Ag(,.) )) & (g[m(Ag(,.) )).

Let U be a domain of Z and let 4 Y denote the set of A-
valued functions defined on U. A function fe4 Y is right dif-
ferentiable at z,cU, if there are constants a;, b;e4 such that
f(zo+2) ~f(20) = Y(a;Re(Z) + b, Im(2)) + o([l2]})

el
asz = (2',...,22 ¥ 9)eZ approaches 0. The constants a; and b;
are called the right differential coefficients of fat z,. In virtue
of (3.1) we always write

(3.2)
and the coefficients a, and b, are written as df (dx") ! and
—idf(dy") !, respectively.

Using therelations (3.2) andZ' = x'+ iy =x'— iy, it
is readily seen that fed Y is right differentiable at z,, if and
only if there are constants «,,3; such that

Z=x"+iy with x/, ERC(Ag(l) )

f(zo+2) —f(z0) = Y (2 +BZ) +o(|z]),
el
as z—0. We write @, =df (dz') ™' and B, =3df (3Z) "
Then the following relations hold:
A (@x) " '=4af (@) +df(d7)7,
af ()~ =idf (@)~ —af (dz)7"), (33)

af (32) ' = Yaf (Ix) T —idf (IY) ),
()~ =Yaf Ox) T +idf (I) ).

Remark 3.1: For an odd index i the differential coeffi-
cients are not uniquely determined, though they are unique
mod Ann (A4, ) = {aed |ad,, = 0}. Therefore the equa-
lities in (3.3) hold only mod Ann(4,,, ). However, if fis
sufficiently smooth, we can choose canonical ones using the
standard expansion of fstated later ( Proposition 3.5), and if
we understand that Jf (9x’) !, eic., are those canonical

ones, the equalities hold exactly.

If there are continuous functions g,,#,€4 ¥ such that
g:(z) =df (3x,) "*(z) and h,(z) = df (dy;) ~"(z) for zeU,
wesay fisa G ' function on Uor feG ' (U). We can also define
G'(U), the set of r-times continuously differentiable func-
tions and G= (U), the set of infinitely differentiable func-
tions on U (see Ref. 1).

From the definition we readily have the following.

Proposition 3.2 (Chain Rule): Let X be another G set
and w= (w*|keK): U-VC W =A, be a G' mapping,
where w*eG ! (U) such that w*(z)€4,,, . Then for /G '(¥),
the composition f (w(z)) of fand w belongs to G ' (U} and the
equalities

af (ax) ' = }k:(af(auk) ~1 9uk(ax) !
+ df () 7 k(Ix) ),
@y '= ;(ﬁf(é’u")‘1 Ju*(gy’y !
+ af (%)~ k(Y)Y
1703 J. Math. Phys., Vol. 28, No. 8, August 1987

hold on U mod Ann(4,;, ), where w' = u' + iv',
An element a of 4 is expressed as

a= Y a,l, ®Vy, acG, MCL. (3.4)
aM

For acA given as (3.4), its body b(a) and soul s(a) are
defined by

s(a) =

acGy, M #O

b(a) =

QopUs 8 Vg

Z a,zu, 81,

acG,

Note that g is invertible if it has nonzero homogeneous body,

while the soul of a is nilpotent. Moreover, for a domain U we

define 5(U) = {b(z) = (b(z"),....b(z* T 9))|zeU} and s(U)
= {s(z) = (s(z"),..., s(2" * 9)}|zeU}.

For a subset A’ of A define Sav(4’') =Z,, C8vV,,,
where M ranges over all subsets in L such that v,,4 '#0.
Then we have 4 = Ann(4 ') @ Sav(4 ).

Proposition 3.3 (Taylor’s expansion): Let Ube a domain
of Z and let w = (w') bein the soul s(Z) of Z. Let feG= (U)
and suppose z + BweU for all 8 with 0<8<1, then

flz+w)

< 1 k LIS i
] 1 _ L . i
= 2 “—‘Zf o (DT T '
mn="0 m!n! z

(3.5)
where z=x+1iy, w=u+1iv, f""-xy - (resp.
Sim. . ) ) is the m + n times derivative of f w1th respect
to x'™ yeensX ,y ,...,y ! (resp.z ,...,z',z " s2¥) and (Fgeeesi )

[resp. (ky,...,k, )] ranges over I™ (resp. I").

Note that only a finite number of the summands in (3.5)
are nonzero because the w' are nilpotent.

Some formulas are more convenient if they are ex-
pressed in z‘ and 7' = (H*=u_ 2g(,)z ‘instead of in z' and Z’
[recall (2.15)]. We define df (9z") ~' to be the constants 3,
satisfying

f@o+2) —f(20) =3 (a2 +B.2) +o(|z]))
iel

as z—0, here a, = df (dz') ~'. Then we have

Af (9z") ' =9f(IZ) sy (3.6)
and the Taylor expansion (3.5) of fis rewritten as
f(z+w) =m2=0 m'n‘ ‘"' -‘z"‘zj:--'z]?(Z)
* . i
X W - i, (3.7)

For later use we prepare the following proposition.
Proposition 3.4: Let f be homogeneous of grade aeG.
Then we have

af*(9z") ™" = olg(i),a — g(D)Of (3z)~')*.

Proof: From the definition of differentiation
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(3f(82")~")* is equal to the left derivative ((3z") ') f*d,
whichisequaltoo{ — a + g(i),g())3f*(9z") ~*. Hence the
desired equality holds.

To distinguish even and odd variables, we introduce

J

@ = i

et =0 m‘an"t!

mms,t =

pI

l]ij',','"'jf!k,"’k

0 m'n.s't'

where

P( S iir sz B@))
is the projection of

-f(xm RS ~ARRY ; o7 RERY X4 2N If)(b(z))

to Sav(4 '), where

A" =Agi,y Agup sy Asn S Ageey)
. .S(Ag(kl) )S(Ag([‘) )' * 'S(Ag(ll) ).

If we set
f;m“‘iﬁ.{‘:'“}?(z)

=2 m!n!slt' 2P Vi sontn vt 0@))

Xs(zh) - -s(Z)s(2) -+ 5(2%),
we have
(Z’é‘) zf ,‘;”.R(Z)

s i e

Fora Gsetl = {i,,...,i, } withi, < -+ <i,, we define a G set
I*={i*,..,i*} in which the grade of i* is —g(i;) and
i* <...<i}. There is a natural mapping *: /-1 * given by
(i;)* = it. For a subset M of I, M * is the image of M under
the mapping *.

ForM = {i, <" <i, }CI,,£" £ " is abbreviated as
£ ™. Now we get the following proposition.

Proposition 3.5 (Standard expansion): Let U be a satu-
rated domain of Z and feG* (U). Then f can be uniquely
expressed as follows:

@0 =T frns D EN*EH,

where M and N range over all subsets of 7, and

(z.5)el, 3.9

(i) farn+ (2) is 2 G = function on U,
M e

for all zeb(U).

The expression (3.9) in Proposition 3.5 is called the
standard expansion of f. The function fM? appearing in

(3.9) is called the rop of f. The canonical derivative

1704 J. Math. Phys., Vol. 28, No. 8, August 1987

2 (f(t kg e kg ki ¥ lf)(b(z)))s(zl'

new symbols ¢/ for the odd variables 2z’
(j=p+1,.,p+¢q).Let Ube asaturated domain in Z, that
is, U=U=U+s(Z) and f be in G* (U). By Taylor’s
theorem we have

RN (b(z))s(’;h) . .S(?:)s(zkl). . 'S(zk‘)fj" . .ff;. L .;!m

c5(Z)5(20) s (Z) 0o Fnpie g (3.8)

I B
af (3" )~ of f with respect to £ * with iel, U ¥ is defined by

af@hH "= SM;N'sz;N‘ @EN M,

where M'=M —{i}, N'*=N*—{i}, and (£M)*™
= €pn- (VMG

The G » function f is called analytic if df (3Z) ' =0,
or equivalently, df (dz") ~! = 0 for any jel,,. Then, f is ana-
Iytic if and only if £y« (2) is analytic for any M,NCI; in
(3.9)..

Remark 3.6: A G ! function fsatisfying df (3Z) ' = Ois
not necessarily analytic. Let 4 be the usual Grassmann
algebra generated by two odd elements v and w over C.
Define a function f in one odd variable £ as follows: For
E£=av+ bwed, with a,beC, f(£) =abvw. Then for
£o = agv + bgwed,, we have

f o+ E) —f (&) = (ag+ a) (by + b)vw — aghovw

= (agh + aby)vw + 0(£)

= (aov - bolU)g + 0(§).

This implies 3f (J€) ™! = av — bw and df (u€) ~' =0.
However, df (3&) " is not differentiable, and hence f'is not
G%

Let Z* = A;. be the superspace indexed by I'*, which
we call the dual superspace of Z. There is a natural mapping

. Z—»Z"‘gnvenbyz—(z"*" ,z) For a domain U of Z,
the i image U * of U is a domain inZe

Definition 3.7: The subset U X, U* = {(z2*)|z = ()
€U, z* = (Z")eU* and b(Z) =b(z"), i=1,...p +q} of
U X U* is called the doubling of U and denoted by dbl(U).
Here Ui is embedded in dbl( U} by the mapping ¢ which sends
zto (z,z) A function f(z,z*) defined on dbi(U) is right
differentiable at (z,,z¥), if there are constants ¢,,8,€4 such
that

fZo+ 2,28 +2*) — f(2p,28)
= E (aizi+Bizi‘) + 0(”2" + “z‘")
el

as (z,2*) -0, for (z,z*)edbl(Z) with (z;,+z, z§ + 2*)
edbl(U). We write a; = df (9Z') "' and B, = df (92") L.
Some formulas discussed above hold also for functions
on the doubling of Z and we list them below.
Proposition 3.8 (Chain Rule): Let U’ be a domain of
dbl(Z). Let K be another G set and (ww*) = (w*|k
eKUK*): U's V' Cdbl(W) = dg X ,Ax- be 2 G' map-
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ping, where w* and w*" are G ' functions on U’ such that
wh(z,z*)ed,ry, WHT(z2%)ed ), and b (wr(z,z*))*
= b(w*"(z,z*)). Then for feG'(V'), the composition
Sflw(z,z*), w*(z,z*)) of fand (w,w*) belongs to G L(U’) and
we have

f (327" = 3 (If (duwh) ™' duwh(dz) !
k

+9f (dw*™y ™ dwr 3y )
mod Ann(4,, ) and

af (az") = > (Of (Qw*) " dwk(az") !

&
+ I (Aw*") " awr T (827) )
mod Ann(A4 _;, ).

Proposition 3.9 (Taylor’s expansion): Let (w,w*) be in
the soul s(Z X, Z*) =s(Z) Xs(Z*) of dbl(Z). Suppose
(z + Bw, z* + Ow*) is in U’, a domain in dbl(Z), for all 6
with 0<6<« 1. Then for a G = function on U’ we have

had 1
DS I AC

mpn =0 m!n!

fz+wz* +w*) =
Xt cw - w,

Proposition 3.10; Any G ~ function f (z) on a domain U
of Z is uniquely extended to a G “ function on dbl(U). Con-
versely, the restriction of a G = function on dbl(U) to Uis a
G = function on U. Therefore we have

G = (U)=G ~(dbl(1)).

Proof: Since any G * function on U can be expressed as
(3.8}, it is extended to dbl(U).

Proposition 3.11 (Standard expansion): Let U be a satu-
rated domain of Z and feG *{dbl(U)). Then fcan be unique-
ly expressed as follows:

f (Z,Z*,§,§ *)
= sz;N“ (zyz*)é‘N‘é‘M: (ZyZ*agyg*)edbl(U))
(3.10)
where M and N range over all subsets of 7, and

(1) fuwne(z2z*) s a G~ function on dbl(U),
= dbl( U),

(ii) fyr.n = (2,2*) belongs to Sav(H Ay H A, j))for
ieM JEN*

all (z,z*)eb (dbl{U)) = {(z,’;) |zeb(U) }=b(U).
The expression (3.10) in Proposition 3.5 is called the
standard expansion of f. The function fl,;z;* appearing in

(3.10) is called the fop of f.

Remark 3.12: If f (z)eG ~ (U) is an entire function of x
and y, that is, it has a Taylor expansion with infinite radius of
convergence, thenitisextendedtoa G ~ functiononZ X Z *.

D(ﬂf_@_): 1 D(%)”w(%>+w(%)+p(§
(22) 21)(1‘_)41)(1)_11,(_0_)__1)(2

x y

S
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IV. INTEGRATION AND CONSISTENCY THEOREM

Before we define integration on a general superspace, we
introduce integration on the body.

Let Z be the superspace given in the preceding section.
With a point z = (z%,...,2%,0,...,0) of the body 5(Z) of Z we
associate the point Z = (',...,7) of the complex p-dimen-
sional space (7 such that 2* = Z'w,,,, Z'C. Let F'be a domain
in the body b(Z). Then ¥ = {|ze¥} is a domain of C”. Let f
be an A-valued function defined on V. Then f is written
uniquely as

f@ =3 fou@u, 8vy, z€V,
a M

where aeGy, MCL, and f,,(z)eC. The functions fa,M
which are defined by

fa,M(z) :fa,M (Z), ZEV;

are C-valued functions on the domain V.
Definition 4.1: Let fed " be an integrable function, that
is, all the £, ,, are integrable on V. We define

ff(z)dz dz* = (=20 S | fum (ZF)dEdIu, @ vy,
v aMJV

where 2’ = X' + .

Definition 4.2: Let Jbea Gset and w = (w’) bea C!
mapping from ¥ toA ;. For convenience, JUJ denotes theG
set defined by the disjoint union of J and its copy. The
(JUJ) X (JUI) matrices

D(u/y))

D ( (u,v)) _ @(u/x)
(x,) (v/x) D(/y)

(((3uf(c9x‘) =N (Quly) ’))

(Bvi(dxH ™Y (Gvi(dy) )
D((w,fi))):(g(W/z) D(w/E))
(z,2) (w/zy D(w/z)
_((c?wj(é‘zi)“) (awj(aii)“))
T \(@w/(d)" ") (dwi(dz)Y))

and the (JUJ *) X (JUI*) matrix

D((w,w*))_ D(w/z) D(w/z*))
(z,z*) /) \D(w*/z) D(w*/z*)
({5wj(5zf)") (8w5(6?')“‘))

~\(@wi(82)"Y) (Bw(aF") Y
are called the Jacobian matrices for w. If J is even and
|I] = |J|, the determinants of D {(x,v)/{x,y)}, D{(w,0)/
(2,2)), and D {((w,w*)/(z,z*)) are called the Jacobians for w,
and are denoted by A((u,v)/(xy)), A((w,0)/(z,2)), and
A{(w,w*)/(2,2*)), respectively.

Forawhile/andJwillbeeven Gsetssuchthat || = |J].

Proposition 4.3: Under the situation in Definition 4.2 we
have A((w,i0)/(2.2)) = A((u,v)/ (x,p)).

Proof: By (3.3) we get

o(2) - (2)0()-2())
o(2)- 0(3)-0(2)o()
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Applying the elementary transformations (see the Appendix, Proposition A.1), we can calculate as follows:

0(2)-20(2)

()6 )l

_ ( 1 )P det( 2D(u/x)
“\2 —2iD(v/x) D(v/y)

Let
D ( (ia,b) ) — D(i/%) D(ﬁ/f’))
(%) (/%) D@/p)/)
where D(i1/X), etc., are the ordinary Jacobian matrices.
Proposition 4.4: Under the above situation we have

D((uv)/ (x9)) = Uy, s D ((#,8)/ (EINU 11,
where

Uu o
oni=(5 0,)
and U, isaJ X Jmatrix givenby (U,) %, = 84u,,,, ( Jisthe

G set obtained from J by redefining the grade of every ele-
ment of J to be 0). Moreover, we have

A((u,p)/ (x,9)) = (det U, )?A((#,8)/(%.5))(det U;) 2,
and, in particular, if I = J, then we have

A{(1,0)/ (x)) = A((#,5)/ (%,)).

Proof: Since u’(z) = @t/(2)u, ;, and 2 = Zu,, we get

n—1_ 9% -
ou'(3x) ™" = I D L=

by the definition of differentiation. This implies D(u/x)
= U,D(#/%) U ;! and thus we obtain the first equality. By
the multiplicative property of determinant we get the other
equalities.
Proposition 4.5: Under the above situation we have
A((w,w*)/ (2,2*)) = A((@,0)/(X.9)).

Therefore A((w,w*)/(z,2*)) is a real number.
Proof: Note that U, U Tis an I X I matrix of which (/, k)
element is 8} u,,,, . By (3.6) we have

D( (w,w*) )
(z,2%)
( D(w/z)

3 Dw/ U, UT )
(U, U~ 'D(in/z)

(U, UNH"'D(w/ U, U
6 wop- PR o)
0 (U,UNH? (zz) /\0 U UT/"

Therefore we get
Al(w,w*)/(z,2%))

=det(U,U]) 'A((w,id)/(2,2))det(U,UT)

= (det U;) “A((w,)/(2,2))(det U, )?,
because det U7 = o{g(1), g(I) — g(I))det U, = det U, by
Proposition A.2 in the Appendix. By Propositions 4.3 and

1706 J. Math. Phys., Vol. 28, No. 8, August 1987

() ()
-0()+o(3

iD(u/y)) _ A( (up) )

(x)/

]
4.4, the last term is equal to
(det U;) ~2A{(u,0)/ (xp))(det U, )?

= A((@,0)/ (%))

Proposition 4.6: Let I and J be even G sets with || = |/ |
and Z=A, and W=A,. Let U and ¥V be domains in b(Z)
and b( W), respectively. Let w = (w') = (4' + i) be a one
to one C' mapping from U onto ¥V such that
A{(w,w*)/(z,2*)) is nonzero. Then for an integrable func-
tion fon ¥ we have

ff (w(2)) ‘ ((w,w ))ldzdz‘ -ff(w)dwdw*
Proof: By Definition 4.1 and Proposition 4.5 we have

[ e
— (=20 f Ford@EFFES))

ANCE P

By the usual formula of change of coordinates, the last is
equal to

(—20)7 };’ J; Foong (sB)dli dB 0, 8y

= ff(w)dw dw*.
v
Foranl XJmatrix M =
trix M * by
ML =olg(j).g(i) —g(NIM)*.
Proposition 4.7: We have
D(w*/z*) = D(w/z)*,
Moreover,
A(w*/z*) = olg(D),g(J) — g(D)A(w/z)*,
- Aw*/z) = o —g(g(J) + g(D)A(w/z*)*.
Proof: By Propositions 3.4 we obtain the first two equali-
ties. The last two equalities follow from Proposition A.3 in
the Appendix.

Proposition 4,8: Suppose w is an analytic mapping from
U to V. Then

() =) = [N

Proof: By Proposition 4.7 and Proposition A.4 in the

(M) wedefinean * XJ * ma-

D(w*/z) = D(w/z*)*.
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Appendix we have
* *
A( G0, 07) ) = olg(D), —g() + g(l))A(i:—)A(-'-‘-’—)

I CICRC

Now, we define integration on the general superspace
Z = A,; (I is not necessarily even). Let U be a saturated
domain in Z. We define integration on the doubling dbl(U)
of Uaswellason U.

Let fed Y (resp. A®™Y) be a G = function and
F2L) =Zfyune D (EN*HM  [resp.  flzz* §6*)
= Zfrrne (2,2%)§ V"¢ M] beits standard expansion. Here fis
said to have a compact support, if every fy.y.(2) [resp.
Jun+ (2,2%) ] has acompact support on the body b( U) [resp.
b (dbl(U))].

Definition 4.9: Let f be a G~ function on U [resp.
dbl(U) ] with compact support. The (Berezin) integral of f
on U [resp. dbl(U)] is defined as

[repdaraar=| 1 @dar,
v by U

2

(resp. f(z,z%8,6 *)dz dz* d§ di *
dbl(U)

= Srp(22*)dz dz*),

b(U)
where fz.; I is the top of /.

Proposition 4.10: Let fbe a G = function on U and let
dbl( £)eG = (dbl(U)} be the unique extension of f to
dbl(U). Then the integral of fon Uis equal to the integral of
dbl( f) on dbl(U).

Proof: Immediate from the fact that the tops of f and
dbl( f) coincide on b(U).

Theorem 4.11; Let 7 and J be G sets and U be a saturated
domain in Z = 4,. Let (w,w*) = (w,w”, ,7'") be a G*
mapping of dbl(U) to dbl( W), where W = A, . Suppose that
{w,w*) is one to one and its Jacobian A{(w,w*)/(2,2*)) is
nonzero. Let V= (w(dbl(U)), w*(dbl(U))) and fbe a G
function on V¥ with compact support. Then we have

(w,w*))
2ol Mz dz* dEdE*
(2r%) 2 dz* d¢ d§

»

f (w,w*,n,n*)A(

dbl{ U}

=€ f [ (w,w*,p,m*)dw dw* dy dn*,
1 4
where A((w,w*)/(z,z*)) is the superdeterminant of

((8wi(azi) -1

(Qw’(82") 1) )
(Ow (') )

(Bw' 32"y~
and €is 1 or — 1 according as b(A{(w,w*)/(z,z*))) is posi-
tive or negative on the body #(U).

Proof: As we did in the proof of Theorem 7.4 in Ref. 1,

the proof of this theorem can be reduced to the following five
cases.

(i) w’ = wi(z,z*)eb(A) for zeb(U) = b (dbI(V))

1707 J. Math. Phys., Vol. 28, No. 8, August 1987

and jeJ,UJ %,
and 7' = £ ' for leJ,UJ *.
(i) wh = z% 4+ a(z,z*) with a(z,z*)* =0,
w’! =z’ for j#j, and g = ¢,
(iii) wh = z% + a(z,z2*)E XL &* with KUL *#£4,
KCI,L*CI*,
(iviw/=z/and 9’ = X, a} (z,z*)L %
(VYw/ =z, g =C"+a(zz*)EXCE", where KC,,
L*CI¥ and KUL*#{l,}.

w’ = z/for j#j,and 9’ = ¢

Proposition 4.6 covers case (i). In the other cases we
can show the desired equality by direct calculations in the
same way as in Ref. 1, and we omit them.

Proposition 4.12: Let w = (w* ) be a G mapping of U
to W. Then w uniquely determines a G* mapping
dbl(w) = (w,w*) of dbl( ) to dbl( W), and the Jacobian of
dbl(w) is equal to the unique extension of the Jacobian
A((w,w*)/(2,2%)) of w.

Proof: Clear from Proposition 3.10.

Combining Proposition 4.10, Theorem 4.11, and Propo-
sition 4.12 we have the following theorem.

Theorem 4.13: Let 7 and J be G sets and U be a saturated
domaininZ = 4,;. Letw = (w’,n") beaG * mapping of U to
W, where W=4,. Suppose that w is one to one and
A{(w,w*)/(z,2*))50. Let ¥V = w(U) and fbe a G = func-
tion on ¥ with compact support. Then we have

J‘ f(w,n)A(M)dz dz* dt de*
v (z,2*)

=€ j [ (w,)dw dw* dn dy*,
¥V

where € is 1 or — 1 according as b(A{(w,w*)/(z,2*))) is
positive or negative on the body b(U).

Remark 4.14: If the mapping w is analytic in Theorem
4.13, then by Proposition 4.8 we see e = 1.

APPENDIX: SOME PROPERTIES OF DETERMINANTS

Let7and Jbe Gsetssuchthat [/ | = |/ | and JUJis either
even or odd. Let M be an I XJ matrix over 4.

Proposition A.1: Suppose i; and i, (resp. j, and j,) are
different elements in I (resp. J) such that g(i,) = g(i,)
[resp. g(j,) =g(j,)]. Let N be an I XJ matrix such that
Np=Mp+kM} (resp. N, =M +kM;) and
Nj = M; for i#i, (resp. j#j,), where keC. Then we have

det M = det N.

Proof: Easy from Proposition 3.5 and Proposition 3.15
of Ref. 6.
Proposition A.2: We have

det M7 = olg(),g(J) — g(I))det M.
Proof* See the proof of Proposition 3.13 in Ref. 6.
We define an I * XJ * matrix M * by

M*: = olg()).g(i) —g(NNUMH*.
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Proposition A.3: We have
det M* = o(g(J).g(I) — g(J))(det M)*.

Proof: We shall prove the assertion in the case where
IUJ is even. Let A[y,y*] be the algebra over 4 generated by
y’ with jeJUJ * subject to the following commutation rela-
tions (generalized Grassmann algebra over 4):

Y= —olg( gk, jkeIUT*,

ay’ = ola.g(j))y'a, aecG, aed,, jeJUJ*.
The transposition * of 4 is extended to A[y,y*] by

(yj)t =yi‘, (yi’)t ___yf for jEJ
Abijection 7: I - Jis extended to abijection 7r: JUT * - JUJ *
by v

w(i*) =7 ()* for iel.

Now we can perform calculations as follows:

detM* [] »”
rerr
=21 M 3G y™ ™ =2 1I YUMoyt
T el T Pel*

—_ (2 HM;(") y1r(l))'.I
il

= (detMHyj)* = I »” (det )*
>

P
=o(g(/),g(I) — g(J))(det M)* H yr.
T
This shows the desired equality. The odd case can be proved
similarly.
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Proposition A.4: Let I, I, J,, and J, be G sets such that
i<k foriel, and kel,, j <! forjeJ, and leJ, and |I,| = |J;].
Suppose I = I,UI, and J = J,UJ, and let 4, B, C, and D be
I, XJy, Iy X Ty, I, X J,, and I, X J, matrices, respectively.

Let Mbe an 7 XJ matrix givenby M = (& 5).IfB=0
or C =0, then

Proof: Taking indeterminates y’ satisfying suitable o-

commutativity, we have from the definition of determinant
that

det M S = ML, y®
= ; (LIA ir’(i) yre kl;II D:'(k) y#(k))
= det 4 [] y/ det D[] »’
jeJ, =

= o(g(j1).g(1;) — g(J,))det 4 det D [] v,
=

where 7’ ranges over all the bijections from I to J such that
#' (i)eJ, if iel, and 7' (i)el, if iel,. The desired equality fol-
lows.
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Cohomology in connection space, family index theorem, and Abelian gauge
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Using the natural connection form on a principal bundle P(M,G) and the bundle 2A(2/.4,5)
a systematic derivation of the double-cohomological series constituted by the exterior
differential d on space-time M and arbitrary, horizontal, and vertical variations in connection
space is given. The relationship between these cohomologies and the family index theorem is
clarified. The formalism is then used to analyze Abelian gauge structure inside non-Abelian
gauge theory. The pertinent functional U(1) connection form, curvature form, and three-form
“curvature” are identified and computed, and are related to the € vacuum, anomalous
commutation relation, and Jacobi identity, respectively. Some of the results differ from those
obtained by Wu and Zee [ Nucl. Phys. B 258, 157 (1985) ]} and Niemi and Semenoff [ Phys.
Rev. Lett. 55, 227 (1985) ] and the results of this paper recover theirs under certain conditions.
Finally the generalization of the formalism to a nontrivial principal bundle by introduction of a

fixed background connection form is discussed.

1. INTRODUCTION

Recently there has been active interest in anomalies'~>
in quantum theory. The cohomology of Lie algebras and Lie
groups has been discussed by a number of authors. Bonora et
al.,® Stora,” and Zumino® give the descent equation of the
gauge algebra §, and the exterior differential d. Faddeev®
discusses the double-cohomological series of the transforma-
tion A, of the gauge group and d. Zumino'? shows that the
cohomology of the gauge group can be reduced to that of its
Lie algebra.

If we describe the connection space U as a fiber bundle
with /¥ as the base and ¥ as the structure group, the
variation §, (A, ) is the one along the fiber %. The corre-
sponding cohomology is called the vertical one. On the other
hand, Gelfand'! and Faddeev et al.!? introduce the horizon-
tal variation 8, (A, ) along the base /¥, and establish the
descent equation of §, (4, ) and d. We call the cohomology
associated with &, (A, ) the horizontal one. In addition to
these cohomologies, Guo et al."? first discuss the cohomolo-
gical series of d and the interpolation variation in the connec-
tion space .

However, few attempts have been made to study the
relationship between the horizontal and vertical cohomolo-
gies, which seem to be different. Faddeev'? and Hou et al.**
claim that they have given the relationship between these
cohomologies. Since the operations of A, and A, do not
match each other, the relation they obtain in their paper is
very complicated and not obvious. A deep understanding of
the relationship between horizontal and vertical cohomolo-
gies is still lacking. In addition, one may ask the following
question: What is the relationship between these cohomolo-
gies and the family index theorem?

This paper is a modest attempt to try to answer these
questions. Using the natural connection form on a principal
bundle P(M,G) and bundle A(A/¥,%) we deal with an
arbitrary variation &, a horizontal one §,,, and vertical one 8,
in a unified point of view. We also give a systematical deriva-
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tion of the generalized finite double-cohomological series in
the space of all connection forms. We show very simple and
obvious relations between horizontal and vertical cohomolo-
gies and, in particular, between these cohomologies and the
family index theorem.'>'®

As an application of our formalism, we examine the
Abelian gauge structure inside non-Abelian gauge theory.
This has been discussed first by Jackiw'” and then by Wu et
al."® and Niemi et al.'® They compute the functional U(1)
connection form and curvature form on connection space by
using the path integral formulation, the Hamiltonian formu-
lation, and the 7 invariant of Dirac operator, respectively. In
this paper we obtain the results in their works in a different
way by using the family index theorem and cohomology in
connection space. We also obtain some new results that re-
duce to those in Refs. 18 and 19 under certain conditions.

This paper will be organized as follows: In Sec. II we
discuss three kinds of cohomological series on connection
space, the family index theorem, and the relations among
them. In Secs. III-V, we present the application of our for-
malism to examining Abelian gauge structure inside non-
Abelian gauge theory. Section V1 is devoted to the general-
ization of our formalism to nontrivial principal bundle. In
Sec. VII we give some conclusions and discussions.

Il. THE FORMALISM

Consider connection forms on compactified Euclidean
space-time M. We shall first assume the principal bundle
P(M,G) has trivial topology, i.e., P =M X G, where G is a
semisimple Lie group. (The case that principal bundle is
nontrivial will be discussed in Sec. V1.) Let 9 be the set of all
such connection forms, % = {4(x)}. Let & be the gauge
group, i.e., the set of maps g: M- G (x—g(x)), ¥ = {g(x)}.
Let %/ 9 be the corresponding orbit space, that is, the set of
different orbits. Because ¥ is nontrivial, /¥ has a topol-
ogy. In fiber bundle language, the connection space A may be
described as a fiber bundle with %/ % asbase and ¥ as struc-
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ture group. Following Stora,” we can locally parametrize %
by

A=g 'ag+g " dg, (2.1)
where a represents an orbit. Then a cotangent vector in % is
84 =g~ '8ag— D, (g '6g) with D,=d + [4, ].

2.2)
We can introduce on ¥ the connection form
o = ~G,D}84 with G,=(D;fD,)~" (23)
so that
A e =8 '8,8. (2.4)

Here 64 can be decomposed into a honzontal comipo-
nent 8,4 and a vertical one §,4,

5’!A = (1 _DAGADA+ ')GA,
8,A=D,GD}+6A= —D, of.

The total connection form over M XUA/% at
(g(x).g(-)x,A)is

(2.5)

A+ oL =A—-G,D}56A. (2.6)
The corresponding curvature form is
=@+8)A+ L) +i[A+ A A+ L]
=F+8,A+ (8 + %)
=F+ (F)1 + (5, 27

where F =dA + }[4,4)] and ( )] stands for a j-form on P
and i-formon %A. |

The bundle and connections can be pulled back onto
M xX%/%. According to the family index theorem,' the
characteristic classes on /Y are expressible as integral of
the higher classes on M X %/¥ over the base M:

QM) = f Py (5™,
M

forms of degree k on A/¥, where P,, (F") is an n-rank
invariant polynomial in ¥ and the dimension of M is
(2n — k). We can choose locally horizontal gauge'?
D } 64 = Osuch that & = 0. It is convenient to define space
in which & = 0as %/¥. So, from Eq. (2.7) we obtain ¥ in
horizontal gauge and we denote it by

(2.8)

G =F48,A=(d+6,)4+}[44]. (2.9)
The Bianchi identity D, # = (d + 8,)% + [4,%#] = 0im-
plies that

(d +8,)P,, () =0. (2.10)

Expanding the P,, ( Gm,

P, (5™ =§q’2‘,._k(F,5hA), (2.11)
we have the following descent equation:

dqg.. (EahA) = O’ 51.9:2)"(17,5;.1‘) = 0, (2.12)

qun x (F,8,4) = _8hq§;lk+l(F6hA)

Introducing integration over an arbitrary nonclosed k-
chain A*in 9/,

azn—k(ﬁk) =J;k G5 (F5,4) 2.13)
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and over an arbitrary (2n — k)-chain C,, _, in space-time
M,

@k(CZn—k) =f (2.14)

Can—k

qgn -~k (EahA )9

we obtain the following finite double-cohomological series
from Eq. (2.12) and the Stokes theorem:

40— (A*+1) = — 0y, (3,81, (2.152)
8:0% (Cop_is1) = —O*(3Ch_rs1).  (2.15b)

Here d, denotes the boundary operationin /¥ . The Chern
classes associated with the family index, when a locally hori-
zontal gauge is chosen, are given by Eq. (2.14) and satisfy
the descent equation (2.15b) for horizontal variation §, and
exterior differential 4. Note that when A is a simplex, Eq.
(2.15b) reduces to the double-cohomological series given by
Faddeev."? -
It follows from Eq. (2.15b) that

5,0%(M,,_,) =0, when dM,,_,=0.  (2.16)

However, 0 “(M,, _,) #8, (something) because of nontri-
viality of the base space %/ .

The Chern classes Q (M,, _ ), which are k-forms on
A/ Y, can be lifted to k-forms Q “(M,, _, ) on . In order to
do this, we first lift the g%, _, (F,5,4) to % and obtain

2

G (T = Y P ((F Vi FP_)
Loy =0
L+ +l,=k

(2.17)
Invariance of the P,, (¥ "), i.e., (d + 8)P,, (F") = 0, gives
dg3, (F") =0, 8¢2"(F™) =0,

(2.18)
qun W(Fh) = —5q2n k+1('9r")-
We can thus construct k-forms on %,
0XCoi) = [ dhoalF, (2.19)
CZn—k
and (2n — k)-forms on M,
QZn—k(Ak) =J- qi’!‘n—k(y"L (2.20)
Ak

where the C,,_, are arbitrary (2n — k)-chains in space-
time M and A* k-chains in 9. We can easily show from Eq.
(2.18) and the Stokes theorem that

dQs_ i (A¥THY = — Q. (BA**1), (2.21a)
Q% U Chp_is1)= —Q%(Cpu_y,1). (2.21b)

These are double-cohomological series in the space 2.

According to the family index theorem," the
Q*(C,,_+ ), defined on 9, defines a k-form on A/ ¥ . This
can be proved’ by checking that the term — D, (g~ 'g) in
84 does not contribute to the result (up tod of some form) if
we look at the nonintegrated ¢%, _ , (¥ ). This observation
is important when we exmine the global property of horizon-
tal cohomology.

We obviously have from Eq. (2.21)

6Qk(M2n_k) —_—-0 Wheﬂ aMzn__k =O, (2-22)
which shows that the Q *(M,, _, ) are cocycles on U. The
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Q*(M,, _ ) are also exact since ¥ has no topology, that is,
Qk(MZn—k)Z(SQk'I(MZn—k)' (2.23)

Here Q* ~!(M,, _ , ) canbe determined as follows: Since the
principal bundle has trivial topology, we obtain from the
relation that

(d+8)P,, (F7) =0
that

P, (F")=(d+0w,, (4+ ). (2.24)
Here w,, (4 + &) is given by the well-known transgres-
sion formula due to Chern,

1
a)2,,_1(A+Jz{)=nf dtP, (A+ o, Fr™ ") (2.25)
(4]

with %, =t¥ 4+ (12— 1) 4 + &)~
Integrating Eq. (2.24) over M,, _, without boundary
and then comparing it with Eq. (2.23) we obtain

Q (M, 1) =f Gon 1 (F), (2.26)
MZn—k
Qk_ 1(Al2n~‘k) =f wlz(n_—lk (Av"{): (2-27)
My, _k

where 05, _, (4;47) stands for the (2n — k,k — 1) compo-
nent of the w,, , (4 + ).
When limited to fiber, Eq. (2.24) becomes

Py (F™) =Py, (F") = (d + 80),, 1 (A +0),

(2.28)
where use has been made of the following facts:
A | =7 = —5,8=v, F rEJG‘V—=F,
| e g 4 _ | ibe (2.29)
@Dan 1 (A + ‘M)lﬁber =Wy, _ (A + U).
Expanding the &,, (4 + v) in v:
By 1 (A+0) =3 35, (1:4). (2.30)
k
We obtain from Eq. (2.28):
dzgn— 1 (UYA) = q(Z)n (Fn) = P2n (Fn))
8,05" ' (n4) =0, (2.31)
8,05 e (A) = — diS5, i1 (1,A4).
Introducing the integrations
6k(c2n—k—l) =J 5’2(n~k—1(v;A)’ (232)
Con k1
0,y 1 (TF) =f &k, i1 (34), (2.33)
l—-k

where the I'* are arbitrary k-chains in &, we have the fol-
lowing finite double-cohomological series from Eq. (2.31)
and the Stokes theorem:
dﬁzn_k*ﬂrk) = —(V)z,,_k(avrk), (2.34a)
5,4~ 1C,, 1) = — QX3C,, _,), (2.34b)
where d, stands for the boundary operation in ¥. When I'*
is a simplex, Eq. (2.34a) reduces to the A, — d series given

by Faddeev.®
Now the relation between the horizontal and the verti-
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cal cohomologies, and in particular between these cohomo-
logies and the family index theorem, may be formulated:
Introduce integrations

a(rk,C2n_k_l)=f Qk(cznvk——l)’ (2.35)
rk

0 G e ) =[0G 236)

Wechoose the (k + 1)-chains A** ' in such a way that their
boundaries belong to ¥, i.e., JA* +! = T ¥, and the pro-
jection of A*+ 'into A/ Y is a k-dimensional sphere S *in it.
Noticing that

QO M o) liver = B (M), (2.37)
we can easily show by means of Eq. (2.23) that
QAT L,Cop i) =a(THCypy i), (2.38)
and, in particular,
THA/G) =0 M, )
=a(T5M,, ,_,)=7(Y). (2.39)

We have thus linked the horizontal and vertical cohomolo-
gies with the family index theorem.

The above analyses are general and abstract. To further
understand the formalism requires a concrete calculation,
which we will carry out in the following sections.

Ill. U(1) CONNECTION FORM ON 2 AND 6 VACUUM

As a first application of the above formalism, we consid-
er the (3 + 1)-dimensional gauge theory without non-Abe-
lian anomaly.?® Fix gauge 4, = 0 and consider the space 2°
of all static gauge field configurations 4 ¢ (k). In the Schro-
dinger formulation the wave functional is /[4]. The Gauss
law

D, (6/64)yY[4]1=0 (3.1)

can be used to eliminate the residual static gauge freedom,
D, (6/6A47) is an infinitesimal generator of the gauge trans-
formation. In the homotopically trivial case a finite gauge
transformation can be obtained from an infinitesimal one.
Therefore the Gauss law means that the wave functional
¥[A] is invariant under “small” gauge transformations.
Here the so-called small gauge transformations are those
that can be obtained from the identity by infinitesimal ones.
We know that there are “large” gauge transformations that
cannot be obtained in this way in the homotopically nontri-
vial case. The wave functional is not invariant under large
transformations

Y[AE] =e™Y[4] (A5=g 'dg+g 'dg). (3.2)

From the discussions in the above section we can easily
compute the one-form on %3/ % 3;

0'(sh =f ¢\ (F8,4)
S3

1
= -3 L (tr(F+ 8,4)%);

= _ L tr(F6,A4),

33
47 Js- (-3)
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which is closed, i.e., 6,,Q (S?) =0, but not exact. We can
lift (S and obtain a one-form on 9%

0'(s) =f3q;(5“2)

= _? ((F)IF) + t(F(F))

= ———J'Btr(F(;?){)

= —— | tr(Fé4).
2y PO

We can explain @ '(S3) as a U(1) connection form on
9. The corresponding curvature two-form is

3.4)

1

8Q'(S*) = —— tr(6A6A)

417’2
=FL3d(tr(5A5A))=O‘.

tr(84D,, (84))

(3.5)

Therefore the field strength form of the U(1) potential form
is zero. Equations (3.4) and (3.5) are the U(1) connection
and the curvature form given by Wu and Zee,'® respectively.
We have obtained these anew using our formalism.

Since base %° has the trivial topology, Eq. (3.5) means
that @ *(S?) is also exact on 9, i.e.,

QI(SS) =80°(S3) (36a)
with °(S3) given by Eq. (2.27):
Q°(S?) =J (4 + )
sJ
1
= __l_f di(tr((4 + L) F )3
$3Jo
=~ 5| rada+ ). (3.6b)

72

Thus the connection form Q@ '(S?) is a pure gauge.
Now we consider integration of the potential one-form
Q '(S?) over an open path A'in 91°. Let its boundary be two
points A ¢ and A on the same gauge orbit. Then from Eq.
(3.6),
QS = f 0°SH =] Q%sH= j Q°(S?)
At Al o

A!
. ‘
—_- (48dA4# A%8)3
L[ artasaar 30
—tr(4dA +34%))
= L[ tr(g—1dpy*=

T 24r 3

The above equation is an explicit manifestation of the rela-

tion 7' (A*/ ¥3) = #°(%3) = Z, which shows that there ex-

ist noncontractible loops in %°/ %> We thus have vortex

field in A%/ %3, in agreement with the conclusion in Ref. 18.
If we define

3.7
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—exp[-L 2,5 )
Q4] exp(sﬂ'zJ;str(AdA+ 3A )0 ly[41], (3.8)

®[A] is gauge invariant from Egs. (3.2) and (3.7). How-
ever, in quantum theory a phase change in the wave func-
tional corresponds to a canonical transformation,!” which
will induce a change in the Lagrangian by a total derivative,
and therefore leads to the vacuum 6 angle in the Yang—Mills
Lagrangian.

IV. U(1) CURVATURE FORM AND ANOMALOUS
COMMUTATOR ON %

In this section, we shall consider non-Abelian gauge the-
ory*! defined on space-time manifold S . We shall fix 4, = 0
and consider the infinite-dimensional affine space %* of all
static gauge field configurations 4 {(X). The two-form on
A/G2is

@2(S2)=f @ (F5,4) = —-—‘— f (tr(F + 6,4)%2
s2 2

= —— | tr(6,46,4).
”2 s (4.1)

Lifting 0 2(S?), we obtain a two-form on 9,

0*sh = [ a2

1
=52 sz(tr(.?"z)) = -———J- tr((F )3F)
——'ﬂ_-z tf((-?—)}(-?){)
' 1
= —— 8464) — —
72 Sztr( ) 41;-25 sztr(.xa(F),

42)

which is obviously closed: Q?(S?) = 0. Here Q%(S'?) can
be identified as the U(1) curvature two-form on %2 The
02(S?) is also exact because of topological triviality of the
space %A%

Q%(8%) =60'(5?), (4.3)
where
Q1(S? =f 0} (A + )
s2
1 1
= e — d 1
yecl) I A t(tr((4 + &) ),
___1 1
=T sztr(Ab‘A) thr(.c{F)
(4.3b)

Thus we have obtained the connection one-form 0'(S?) on
2. Note that when ./ = 0, only the first term in Eq. (4.2)
and (4.3b) survives: This corresponds to the expressions ob-
tained by Wu and Zee.!®

Now let us examine the integration of Q2(S?) over a
two-dimensional disk A”? in %2 Assume its boundary
9dA? =T" is a one-dimensional loop in &2 We then have
from Eq. (4.3)
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f QZ(SZ)=f 60‘(52)=f Q’(SZ):f Qs
a? A? an? r
[ wen=[ [ @
r' 1 s
f Lo [
r', Js? rt Jsz
SRS RN e
0 D3+ 0 D37 re 3

(4.4)
Therefore the Chern number associated with a functional
U(1) connection form Q'(S?) is an integer #, in contrast to
the conclusion in Ref. 18. Note that Eq. (4.4) means that
(N %?) = 7' (%?) = Z, which shows that there exists a
noncontractible two-dimensional sphere in %%/ %2, So, we
have a monopole in the orbit space A?/F 2.8
The above system, quantized in Schrodinger formula-
tion, is the infinite-dimensional version of quantum electro-
dynamics in ordinary space, and as in the finite case, the field
velocity operator

Ve =64 +Q'(S?), &y =fd2x5A 7(x)

64 (x)’

(4.5)
on 9 describes a gauge field (where X stands for sum over a,
i, and integration over X) for an external U(1) connection
form Q'(S?). The commutation relation leads to the non-
zero curvature two-form

[Vy.Vy] =80"'(S?) =Q%(S?)

1 1
= - — tr(dA64) — — 6 ZF),
8 L roddd) =5 L:”( )
(4.6)
1

303 — 3ogay . _ ¢ tr F3)3
0*(s%) Lx‘“(‘/) prol NG

which, being independent of the dynamical variable, satisfies
the Jacobi identity

[Vi:[Vy:V2]] + (perm.) =8Q%(S%) =0.  (4.7)

Thus the translations (i.e., field velocity operators) on D
constitute a Lie group. However, the Gauss law fails because
V' satisfies anomalous commutation relation.

V. FUNCTIONAL U(1) GAUGE THEORY WITHOUT A
CONNECTION ONE-FORM AND THE ANOMALOUS
JACOBI IDENTITYON &

We now consider (3 4 1)-dimensional gauge theory
with non-Abelian anomaly.! Assume a non-Abelian gauge
field is minimally coupled to Weyl fermions in a complex
representation of some gauge group. We once again fix
A, = 0 and consider the infinite-dimensional affine space %°
of all static gauge field configurations 4 ¢(x). Form %*/ %?3,
the space of three-dimensional gauge fields modulo three-
dimensional gauge transformations. Since we are dealing
with anomalous gauge theory, we have to consider a two-
form on %°. To this end, we first compute a three-form on
/%3 We have, from Eq. (2.14),

i

487

03(s?) =f G (F8,4) = —

J (tr(F +8,4))3
S]

tr(8,A48,48,4). (5.1)

i
487 Js»

This form is closed, i.e., 5;,@3 S = 0, but not exact. In
order to relate to anomaly, we lift the @ 3(S>) and derive a
three-form on 203:

- L [y - [ W@ - [ s

487 Js

i i
= — 1| tr(648464) — —— 68 | tr(FSAA + Fo/8A + F/D o).
4877 L ( 167 Jso .

(5.2)

This is also closed: Q *(S*) = 0. Notice that the Q*(S?) is exact on %’ because of its topological triviality

Q3(S?) =80%(S?).
The two-form Q7(S?) is given by Eq. (2.27),

Q*(S?) =J

5

i

A4+ )= — ——
.‘a)3( +) 167 Js* Jo

(5.3a)

1
dr(tr{(4 + o ).F 2))?

1

i

i i 3
— U trcaoa84) — —— [ te(FSAA + Ferd4 + F/D, o) — 5f tr(d(AF—r- Fa_ L4 ))
4sﬂ5L‘r( ) "o s 4 1677 s 2

We can identify Q*(S*) and Q *(S*) with the general-
ized functional U(1) “potential” two-form and “field
strength” three-form on 9°, respectively. Therefore, the sys-
tem, quantized in the Schrédinger formulation, is an infinite-
dimensional version of a quantum mechanical point particle
that moves in a background field without potential one-form
asdiscussed by Hou ez al. in Ref. 22. We have to deal with the
functional U(1) antisymmetrical tensor gauge theory”
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(5.3b)

'without potential one-form. Such a system shares many fea-
tures with quantum electrodynamics without potential in
ordinary space-time: First there is no smooth U(1) potential
one-form on %°. Second the representation space of the
translation group acting on 2° is not ordinary functional
Hilbert space, and we have to introduce a membrane-depen-
dent wave functional®? on 2. So, we have the situation as in
Mandelstam.?* In analogy with the finite-dimensional case
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covariant translations on %> are generated by the “velocity”
operator (or so-called electric field) E,,'° although it is not
a smooth functional. The commutation relation gives the
“connection” two-form

[Ex.Ey] =0%(S%) = ~ L

tr(A4
yrycl IR 1(A5A64)

s

1

1672 Js»

i 1
-t tr(.fi(AF FA-L4 3))
167 Js + 2.0
(5.4)
and the Jacobi identity gives the “curvature” three-form

[Exy[Ey»Ez]] + (perm.)
=80%(S?) = Q%(S?)

tr(FOAAL + Fof 84 + F/ D, o)

tr(545404)

—— ———

487 Js»

i
— | w(FéAsf + Fot 54+ FoD o).
487 Js: ¢ 4 55)

Note that the above anomalous terms in the commutation
relation and the Jacobi identity differ from ones given by
Niemi and Semenoff in Ref. 19. Our results reduce to theirs
for o =0.

Since the Jacobi identity fails, the covariant translations
on %* are not associative and cannot form a Lie group.?
However, since 5Q (S ) = 0, the electric field trivially satis-
fies the algebra identity given by the present authors®®

[Ex)[Ey:[Ez,Ep]]] + (perm.) =8Q*(S?) =0.
' (5.6)

As pointed out in Ref. 26, they do not form the so-called
Malcev identity.”’

It remains to examine the global properties of the
Q3(S?) and of the 0%(S®). To this end, we integrate
Q3(S?) over the three-dimensional disk A2 in 9. Select A3
so that its boundary JA® = I'?is a two-dimensional sphere in
2, and its projection onto %%/ ¥ is also a two-dimensional
sphere. Then, from Eq. {5.3),

J
fQ’(S’):f 80%(S?) = Qz(sf‘)=f ﬂ’(s3)=f 62(s3)=f fég
a3 A an® r? re T2 Js?

w W w1
- 5 5= a);—ff w}:jJ-a)‘
T2 Js? 2 Js? ' JD*, reJp* rJst

% vo
Tt Js* | e r° JD%, reJp?. reJs®
I

which means that = (%*/%93) = #*(¥?) =Z. Thus we
show that there exists a noncontractible three-dimensional
sphere in %%/ %3,

Vi. GENERALIZATION TO A NONTRIVIAL PRINCIPAL
BUNDLE .

When the principal bundle P(M,G) is nontrivial, the
theory is slightly complicated. We choose a fixed back-
ground connection'>?* form A on P and extend it to P X 9.
We shall not transform A, ie., 5A=0=6,A=0=5A.
Therefore the extension of A from P to P X % is still A. The
corresponding curvature form is

F=dd +14.4].

Equation (2.24) used in Sec. II is replaced by

P, (F") — P, (F") = (d + 8)w,,_, (4 + o A).
(6.2)

(6.1)

This can be shown easily as follows: Let A,
=t(Ad4 o) + (1 —)A. Then :
F,=(d+8)4, +}[4.4,], (6.3)
dF, od, { aZ,] ~ 04,
— = (d 4+ ) —+ {4, — =D, —. 6.4
e A "ot o4
The Bianchi identity is
E,F,E(d-{-a)i’, + [Z,,ﬁ,] =0. (6.5)
Therefore
1714 J. Math. Phys., Vol. 28, No. 8, August 1887

(5.7)

: F (aFt F —-l)
Zp, (Fry=nP, | = F"
6: Zn( r) nr, 6: ’Fl

~ OAd, -
=nP,,(D-——‘ ;'-‘)
0\ D: —=oF

s~

o4, -
= (d + 8)nP,,| — ;'—’)
( + )n 2n( 6t ;F

=n(d+8)P,, (A + o —AF ).

Integrating the above equation with respectto ¢ fromOto 1
gives

Py (F™) = Py (F™)

= (d +&)n L' dtP,,(A+ o —AF?"').  (6.68)
Thus

Wgo_ 1 (A + o A) =nJ: dtP,(A+ o —AF).

(6.6b)

Integrating Eq. (6.2) over M,, _, without boundary,
we still have

Qk(Mzn__k) =5ﬂk—l(M2,,__k). (6.7)
Here
Q (M, _ 1) =f P, (F"), (6.8)
Mln—k
B. Houand Y. Zhang 1714



O (A + A,A4).  (69)

Qk_i(Mzn_k} =J‘

Myp _ x
Equation (6.2), when limited to fiber, becomes

P, (F") — P, (F™) = (d + 8,)w,,_, (4 +v,4).

(6.10)
Using the expansion of w,, _, (4 + v,4) in v,
W1 (A +0,A) =Y 0k, (1;4,4), (6.11)
k
we can easily show that
Py, (F") — Py, (F™) = da%, _, (1:4,4),
8,03~ '(1;4,4) =0, (6.12)

8,05 (14,4) = — dok, ., (4,4).

We thus obtain the double-cohomological series in the non-
trivial case.®

Note that all formulas so far written, together with the
unchanged expressions in Sec. I1, are global on P(M,G) and
that only for a trivial bundle one can choose 4 = 0 and re-
cover the local formulas in Sec. I1.

Vil. CONCLUSION AND DISCUSSION

We have stressed the relation and difference between an
arbitrary variation &, and the horizontal §, and the vertical
8, ones in connection space. By using the natural connection
form on the bundle P(M,G) and A(A/¥,% ) and by intro-
ducing integration over an arbitrary chain, the generalized
finite double-cohomological series can be obtained. Thus the
relation between these cohomologies, and the family index
theorem can be made simple and obvious. When applying
this formalism to analyze Abelian gauge structure inside
non-Abelian gauge theory, we reproduce known results in
Refs. 18 and 19, and also give some new expressions. The
method discussed here has a few important advantages:
First, it is very simple. Second, it exposes the mathematical
origin of Abelian gauge structures in the sense that these
structures can be analyzed by the method. Finally, it can
easily be generalized to higher dimensions and to other the-
ories such as gravitational and supersymmetric Yang-Mills
theories.
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Models with a multiplet of field variables arranged into rectangular matrices, in the limit of
infinite dimensions of the matrices, are studied. In zero-dimensional space (where the problem
is a combinatorial one) a closed solution is given that improves the one previously known. In
arbitrary space dimension a symmetry is described that connects rectangular models with

vector models.

I. INTRODUCTION

Gaussian ensembles of large matrices with given sym-
metry group have been used for a long time to describe the
fluctuations around the average distribution of highly excit-
ed energy levels of heavy nuclei.! As the measure in probabil-
ity space is taken to be Gaussian, these ensembles may be
said to be models of noninteracting matrices. More recently,
in the study of a discrete formulation of a statistical mechan-
ics for surfaces, ensembles of Hermitian matrices with a cu-
bic interaction were studied.” An ensemble of two sets of
matrices with quartic self-interaction and a quadratic cou-
pling was shown to define an Ising model on a random lattice
in a two-dimensional space.> All these models considered
square matrices in the limit of infinite dimension. Some at-
tempts are currently being made to relate the statistical me-
chanics of a randomly triangulated surface to a viable discre-
tized string model.

Our main interest in evaluating matrix models in the
large N limit is presently oriented to quantum field theory.
We then use a language appropriate for it, even in Sec. II,
where we limit ourselves to a zero-dimensional space-time
and the quantum field theoretical model is merely a combin-
atorial problem. Field theoretical models with multicom-
ponent field variables are of substantial interest in them-
selves as well as tools for nonperturbative calculations. The
two most popular classes of models have the field variables
arranged as vectors or square matrices, and the low-order
invariants built with them provide for the Lagrangian. Mod-
els with fields arranged into rectangular matrices offer an
obvious interpolation between the two classes and were re-
cently studied.*”

This paper continues the study of rectangular models.
In Sec. IT we define a model of interacting rectangular matri-
ces of sides N;, N, and solve it in the limit N,— « and
N, o, with fixed ratio L=N,/N,. We evaluate the Green’s
functions for the entire range of the dimensionless variable

— w <m?/\Jg < «; the present derivation is simpler than
the one previously known, which is valid in a more restricted
range.®

In Sec. 111 we describe an exact symmetry property of
the planar Green’s functions® of rectangular models with
generic interaction, valid in any dimension of space-time,
which gives the simple relation between “internal loop ex-
pansion” and “large N expansion” of vector models.
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Il. A ZERO-DIMENSIONAL MODEL
We consider the partition function for the model

- [ om)
m?, T EarT T
xexp{-tr[TM o+ Lo aam M” 8
where M is a real NL XN matrix, M7 is its transpose, L> 1,
2
Zy= f [DM }exp{ — tr{-]—'g——l-MTM}} R )
and

DMl= | dM,. 3

i 1,...NL

J= 1L L,N

Because of the invariance of the Lagrangian under the
symmetry group O(NL) X O(N), it is convenient to rewrite
M in the canonical form M = 0,AQ, with A; = 4,8, for
1<i, j<N and Ay =0 for N<iKNL, 1<j<N, 0,€0(NL),
0,e0(N). The action depends upon the N real variables 4,,
whereas the integration over the “angular variables” cancels
because of the normalization of the partition function. As
shown by Simonis we may write

f II d‘% (L-I)N H

i=1 IKi<j<N
2
XCX[_ (—m—,l’ £41)]. 4
p Z_: >k + N 4)
Here and in the following we neglect factors irrelevant to the
evaluation of the Green’s functions. In terms of the quadrat-
ic variables #, =4 ?/N, i = 1,...,N, we obtain

[ 3o

i=1
L—-1-~1/N

~ £ rogs, — — 3 log _tj|)] 5)

l <j
The large N limit is performed by the standard method® of
introducing the continuous function #(x) and looking for the
saddle point:

1 2
Z ~ fdt(x)exp{ —sz dx[—’—"—z—t(x) + gt%(x)
0

|47 -47]

1
1 log t(x) — -;—-if’dylﬂg}t(x) —f(}’)}}} ,
0
6)
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We might have considered the model (1) with M being a

complex matrix. Since the appropriate measure would then
be’

43 =437,

(8)

one sees that the present model is reproduced after the re-
placements m?/2—-m?, g—2g. The saddle point equation
(7) is rewritten, in the usual way, in terms of the density
u(t) =dx/dt

2
—-2——+2gt— —~—-—-—-,f/d uls) 9)

I~S

[D/l]: ﬁd)‘i{/{i{Z(Lw})N H
i=1

1<i<j<N

The requirement that the variable ¢ should be non-negative
leads us to invert Eq. (9) by choosing the path / to be the
segment [A4,B] with 0<A4<B. We find

2

u(t)=2;f (B~t)(t-A)(t+A;B +£).L

4g
(10)
where
2
4+ B+ B (A+B)*£-;—1-, (11)
JAB[m* +2g(A+B)1=L—1. (12)

The even-order planar Green’s functions are easily evaluat-
ed:

{(tr(M'™™M)")
N n1
The special case of square matrices (L = 1) implies, by

Eq. (12), either A =0 or m* 4+ 2g(4 + B) = 0. The first

choice immediately leads to the Saclay solution,® which

holds for m?/\jg> — 4. The latter choice gives

u(t) = 2g/m (B —1)(t—4), (14)

and the corresponding Green’s functions are those of a
Gaussian model with nonvanishing average.® In the truly
rectangular case, L > 1, the lower extremum A4 is strictly
positive and the density «(¢) is non-negative for every real
m? and positive g. We also verify that the system (11), (12)
has a unique solution for 4,8 in the whole range of the pa-
rameters (L > 1, g> 0, m® real) and that the solution is con-
tinuous as a function of the parameters, thus suggesting the
existence of a unique phase for this model. The density may
be written

G% = lim
N o

fa'tt"u(t) (13)

u(z‘)=—-—\1](B—-z)(t—-A)(2g+—1—£‘—-—l). (15)
™ VAB
One trivially finds
G,, =28l + [(L—1)/2JdB I, _,, n»1, L>1,
(16)
with
L=[(B—A)*/8l4" ,F,(—n}31—B/4), (7)

in particular,
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= [(B—A)z/lél[m2+4g(A +B)],
_(B 4)?
16

(18)

G, [ (A+B)— gAB+-Z—g(A +B>2}.
(19)

We note the special case L>1, m*>0, g = 0. The system
(11}, (12} is then solved by

=[(L —1)/m]’, B=[(L +1)/m]* (20)
and one has
2 B TINT T
G, =" gy Y B—X) 7 —4)
T ST x
B L (\/z‘n 1)2n-.2
- mZn
><2F1(—n+1 EN i [ ) 1)
(VL —1)?
By comparing Eq. (21) with the square matrix case
(L=1),
(e [l 1
7 Jo m? al(n + D m*
(22)
we see that the density
m* J(B—x") (x> —4) -
u(x) =3 r x » VA <x<(B,
0, elsewhere ,

is the generalization of the Wigner semicircle distribution,’
for the case of rectangular matrices.

The rectangular case with O <L < 1 is obtained from
Egs. (10)-(13) by exploiting a symmetry property that
holds in any dimension of space-time and which we now
discuss.

. SYMMETRY OF PLANAR RECTANGULAR GREEN’S
FUNCTIONS

In Euclidean R space, we consider the Lagrangian den-
sity
LM (x))=tr[d,MT(x) 3, M(x)
+ (m*/2)M T(x)M(x)

+gM ()M (x)M "(x)M(x)] (24)
and the set of singlet Green’s functions
Fy, (x1,%0000 X5, m%8,NL,N)
= f [DM (x) 1te(M " (x )M (x,) - M(x,,))
X exp( - fd"x f(M(x)))[ J [DM(x)]
-1

Xexp( — Jd"x f(M(x)))] . (25)

The exchange NL<>L amounts to the exchange

MT (x)«=M(x), which leaves the action and the measure
invariant. Then
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F,, (X1,X5y...,X5,;m*,g,NL,N)
= Fyp (X3, ;m"8,N,NL) . (26)

These Green’s functions have a nontrivial large N limit,
apart from the overall factor N* * !, provided that g is re-
placed by g/Nk, where the parameter k is independent of N,
That is,

Em N ~®+VF, (X1,%,..,%5,;m%,8/ Nk, NL,N)

N~ oo

= G, (X1 Xp0Xpnsm*g/K,L) . 270
The symmetry property (26) then implies
G5, (XX, %0 38/k,L)

=L"*'G B (x%3,....% ;8" /k,1/L)

=L"+1GE (X,,X3,....%,,:8L /k,1/L) , (28)

where, in the last equality, we exploited the invariance of
planar Green’s functions under cyclic permutations.

The most symmetric choice for the constant k£ follows
from the geometrical mean of the numbers of rows and
columns, that is, kK = YL and it leaves the coupling constant

g=g/JL in the G unchanged under the symmetry:

G, (X1%0 X2 38,L)
=L"*1G Y, (XXX /L) 29

We note that by this choice for the parameter & the ob-
vious invariance of the theory under the exchange between
rows and columns, Eq. (26), is represented in the planar
limit in the most natural way, Eq. (29).

The model with rectangular matrices interpolates in
some way between models with square matrices and vector
models. However, the choice Xk =+ is such that the
G8 (X1,X5,:...%2, :8/YL ,L) have no nontrivial expansions at
fixed g either around L = O or at L = «. To be more specif-
ic, we consider the O(L) symmetric Lagrangian model with

a vector of L real field components ®,, i = 1,...,L, with the
quartic interaction
L i =[B(x)@(x) ], (30)

the set of Green’s functions

2n—1
an (xlsx2""’x2n ;g’L) E( H q,(xi )'¢(xl+ 1 )> ’
i=1
(31)
and the usual large L expansion

an(xl’ ’xZn’L ) z ( ) 2nj(xl""’x2n;g) .
(32)
The planar (that is, N = oo ) rectangular Green’s func-

tions G, (Xy,...X2, ;¢7k,L) have a nontrivial large L expan-
sion, provnded k=L:
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68 (ruta L) =L7 § (]G3, Gintanit).
j=o
(33)

At arbitrary order in perturbation theory it is easy to
check that G, ; (x,...,X,,g) is the planar part of the graphs
that contribute to &, ; (Xy,...X2,38)- Since in the first two
orders in the large L expansion of the vector model, Eq.
(32), only planar graphs contribute, it follows that

an,j(xl"""xln;g)= 2nj(xl! +X2,38) forj=0,1.
(34)

From the symmetry property, Eq. (28), one obtains some
interesting consequences that hold for the generic vector
model in arbitrary space-time dimension. Consider, for in-
stance, the .}, given in Eq. (30). One may introduce an
auxiliary field (random field) to transform the original
quartic interaction into a cubic one (with imaginary cou-
pling constant). In this case, the evaluation of Green’s func-
tions, Eq. (31), in the exparnsion in the number of loops of
the original vector field (which we called internal loop ex-
pansion®®) is obviously the Taylor expansion around L = 0
of Eq. (31):

G an (XX ;L) = 2 ngZn,j (15X 250+4%2,58) -
=)

(35)

The previous discussion for rectangular models implies that
the planar part of g,,, ; (x,,...,X2, 3g) equals the planar part of
G 1n,j (X1yersX2y 8) for every j and n.

The closed solution of the large rectangular matrix
problem in zero dimensions, derived in Sec. II, allows us to
verify the symmetry, Eq. (28), in a straightforward way.
Indeed, the solutions g4 and gB of the system (10), (11),
depend on g and L only through the two combinations
u,=g(L + 1) and u,=g|L — 1], which are invariant under
the symmetry.
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The traveling-wave solutions of a model Lagrangian density for a complex-valued scalar field
with possible application to charge density waves in systems with sixfold symmetry are
explored by means of the slow-fluctuation technique. There are five main wave types separated
by three bifurcations with respect to integration constants. In addition, there are several classes
of degenerate waves, including some with purely harmonic, stable, straight-line or circular
motions of the amplitude vector. Beyond the range of the slow-fluctuation approximation there
are several unstable soliton solutions, three of which have unexpectedly curved paths of the

amplitude vector.

I. INTRODUCTION

We present here an overview of all traveling-wave solu-
tions for the complex-valued scalar field ¥(x,t) = u(x,t)
X exp [id(x,t)] having the Lagrangian density

L =44 F = 1o+ 3 )
— 1B [¢|* — D [¢|¥(1 — cos Ng) (L.1)

with N = 6, where A, B, and D are positive constants. This
model has possible applications in the theory of charge den-
sity waves in crystals where the symmetry-breaking last
term of (1.1) can approximate the effects of commensur-
ability pinning of lattice period and wave period."?

We have previously treated” the case N = 4 in the slow-
fluctuation approximation,®’ which for this system remains
numerically accurate up to moderately large amplitudes
over a hundred periods or so. Three main wave types were
found. They are separated by two bifurcations, one with re-
spect to a coupling strength A = 1 + 16 D /B, the other with
respect to an integration constant ¢, equivalent to an energy.
There are also various constant-amplitude (c-a) waves, and
beyond the limits of validity of the approximation there are
several obvious solitons that had been noticed before.®

The case N = 6, with sixfold instead of fourfold symme-
try, is far more involved. There are five main wave types, and
an additional bifurcation with respect to an integration con-
stant a. There are again various c-a waves and obvious soli-
tons. Furthermore, if we extrapolate our classification of
waves in a qualitative way beyond its quantitative validity,
we are led to conjecture certain unexpected soliton solutions,
and indeed, some numerical experimentation confirmed the
existence of three such curious solitons, only one of which
has a certain parallel in a soliton discovered previously in the
N = 2 system.®

Given the complexity of the case, we take license to de-
scribe our main results by means of graphs and running com-
mentary without detailed derivations. However, we specify
enough close links with the exposition in Ref. 2 to enable the
reader to supply all derivations easily, albeit with consider-
able tedium. Readers who seek access to the results at the
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expense of skipping these links altogether will find it helpful
occasionally to turn forward to Figs. 7 and 8 which display
the classification of all waves (of moderate amplitude) from
different points of view.

The numerical accuracy of our approximation was
checked by means of a large sample of test cases calculated at
the system parameter values A’ =} and A ' = 2. The results
were virtually the same as for the N = 4 system, which we
have discussed® in detail: in most cases, graphs of the ap-
proximate and the exact solution are indistinguishable over
some 100 wave periods, provided the wave amplitude does
not exceed one-fourth of the maximal finite value (i.e., one-
fourth of the distance from the origin to the saddle point in
Fig. 1 below). For initial conditions near unstable waves, the
approximate solutions were often less accurate, as can be
expected. Still, as a qualitative predictor of wave types and
bifurcations the slow-fluctuation approach is fully effective
even near these dynamical instabilities.

Il. TRAVELING WAVES

Traveling, undistorted waves are functions of the vari-
able s = (x — vt) (1 — v*) ~ "2 only. When we introduce
this quasitime in (1.1), and also scale the variables as in Ref.
2 in order to hide numerical coeflicients, the Lagrangian
density becomes a Lagrangian function for the motion of a
fictitious unit point mass in the potential
ViEm =1E+77) —JE> +77)?

—A'(3EF =)', A'=24D/B* (2.1
where £ and 7 are the (scaled) real and imaginary parts of
the wave function ¢ (s).

The potential has sixfold symmetry. From a central ba-
sin three ridges issue along the directions 7 =0 and
7 = =+ £V3; they lead to six hilltops at unit distance from the
origin. Between the hills lie six saddles along the directions
&=0andn = + £ /v3. Beyond hills and saddles, the poten-
tial falls off to negative values everywhere. Figure 1 shows
contour maps for 4’ =land A’ = 2.

The moving point mass represents the end point of the
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FIG. 1. Contour maps of the potential (2.1) in the first quadrant. To obtain
the complete figure resembling a six-star, adjoin mirror images on the left,
and below the £ axis: (a) A' =1, (b) A’ =2.

amplitude vector of a transverse i wave as seen by an observ-
er at a stationary place x who looks along the propagation
vector. At infinitesimal amplitudes the motion in the central
basin will be purely harmonic, with both component fre-
quencies being equal, w, = @, = 1, as seen from the leading
term in the potential (2.1); thus, the orbit is elliptical. At
finite amplitudes, precessions and librations of the orbit set
in. The approximation to be developed below shows that
there are five motion types possible (plus degenerate or spe-
cial cases). We display representatives of these right now in
Figs. 2 and 3, as obtained by numerical integration of the
exact equations of motion.

Figure 2 shows two typical motions in the potential of
Fig. 1(a). In Fig. 2(a) we see a “valley libration,” a rather
obvious hence-and-forth motion in the valley at 30° to the £
axis. It resembles an almost linear polarization which goes to
almost elliptical and back as the polarization axes librate
about the 30° line. Figure 2(b) shows what we call a “narrow
precession;” the motion remains nearly elliptical at all times,
although with appreciably changing width, and it steadily
precesses.

Figure 3 shows three typical motions in the potential of

1720 J. Math. Phys., Vol. 28, No. 8, August 1987
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FIG. 2. Two representative orbits in the potential of Fig. 1(a) with A’ =1},
and below the a bifurcation. Scales enlarged over Fig. 1. (a) Valley libration
corresponding to even—~even modulation between R, and R, in Fig. 5(a) or
5(b). Set up from R, by release from rest at § = 0.3768 and 7 = 0.0447;
a = 0.072, hence A ‘a = 0.018 < }. (b) “Narrow” precession corresponding
to odd—odd modulation between R, and R, in Fig. 5(c). Set up from R, by
transverse launch at £ = 0.1020 and 7 = Owith 7 = — 0.3481; & = 0.0649,
hence A 'a = 0.016 <}.

Fig. 1(b). In Fig. 3(a) we have a valley libration with rather
more shape change than the one in Fig. 2(a). Figure 3(b)
shows a precessing oval with relatively little change of shape;
since the oval remains broad we call this precession “wide.”
Figure 3(c) brings something entirely different; a “ridge li-
bration,” with the mass point always deflected towards the
ridges so strongly that it moves towards a hilltop rather than
a saddle.

ill. THE SLOW-FLUCTUATION APPROXIMATION

This section is closely aligned with Ref. 2, and all vari-
ables and functions have the same meaning.

M. F. Augusteijn and E. Breitenberger 1720
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FIG. 3. Three representative orbits in the potential of Fig. 1(b) withA ' = 2.
Scales enlarged over Fig. 1. All three are above the a bifurcation, with the
same a = 0.077, hence A '@ = 0.154 > }. (a) Valley libration corresponding
to even—even modulation between R, and R in Fig. 6(a). Set up from R, by
release from rest at &£ = 0.2191 and % = 0.3256. (b) “Wide” precession cor-
responding to odd—odd modulation between R, and R; in Fig. 6(b). Set up
from R, by transverse launch at & = 0.2280 and n = O with n = — 0.3194.
(¢) Ridge libration corresponding to odd-even modulation between R, and
R, in Fig. 6(b). Set up from R, by release from rest at £ = 0.3920 and
7 =0.0173.
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In terms of the canonical amplitudes and phases p,, g;
(sometimes called “action-angle variables”) the approxi-
mate but integrable slow-fluctuation Hamiltonian for the
potential (2.1) is found to be

S =p +DP:— %1_7% —3pp,—3D5
—YA'Pip, + 94 P p; — A P
+ [ = 45D, — 94 'PiD, + 64D \p3 |
% c0s(27, — 2G,). (3.1)

The integration procedure by means of the first integrals

pi+h=a S=E, (3.2)
and using the abbreviation
a=E—a+i+U'a, (3.3)
yields the differential equation for the £ amplitude,
B =fB)
= — (2P - 2F) (2P + 2F), (3.4)
F(psa) =p (@ —p)(6A'a— 1505, —}),  (3.5)
P(pia) =c, — 250 B + (394 'a + H)B}
— (34 'a® + la)p,. (3.6)

The polynomial f(p, ) is seen to be of the sixth degree, so
that Eq. (3.4) leads to hyperelliptic integrals. General ana-
lytic solutions as in the case N = 4 are not available,? but an
adequate discussion of the all-important roots of f(p, ) is still
possible.

The astonishing complexity of the Hamiltonian (3.1),
and of the equivalent Eq. (3.4), must be attributed in part to
the use of coordinates suited for fourfold symmetries to de-
scribe a system with sixfold symmetry. However, there is
intrinsic complexity as well. We mention in passing that for
N> 6in (1.1), several slowly fluctuating terms in the Hamil-
tonian arise beside the one with phase 2§, — 2g,; e.g., for
N = 8 thereis also one term with 4g, — 4g,. Thus, the higher
N, the more complex the effects of the nonlinear coupling.
An attempt to reduce these symmetry and nonlinearity com-
plications by the use of other coordinates, say of plane polar
coordinates, would only substitute complications of other
types: at infinitesimal amplitudes we would no more be deal-
ing with normal modes, the all-important conservation law
D\ + P, = a would take a much less simple form, and all
discussions of orbital stability would become much more
involved. Thus we prefer to put up with the complications in
rectangular coordinates rather than lose so many theoretical
tools.*®

An attentive referee remarks that amongst workers in
Hamiltonian mechanics our approximation would be called
“first-order averaging,” and goes on to ask: since it is well
known'® that first-order averaging of sixth-order terms
should be accompanied by second-order averaging of fourth-
order terms, why would we not include corresponding terms
in our S ? The answer is starkly pragmatic: our S yields good
results, as specified above. Here as in previous cases®’ we
rest our claims for the usefulness of the method, and our
justification for its lengthy theoretical development,*® sole-
ly on its remarkable numerical accuracy. Of course, we are
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only. interested in accuracy over a hundred periods or so,’
not in long-term behavior, ergodic properties, approach to
chaos, or the like. Even so, we have enough insights of high
generality to offer; cf. the stability and bifurcation results in
Refs. 2, 4, 6, and 7, and those presented in Figs. 7 and 8
below.

IV. THE ROOTS OF Ap,)

The roots of f(p,) are called even or odd according as
they are roots of the first or of the second factor on the right
of Eq. (3.4), respectively. We denote them by R, ., and
R,,s, respectively, and order them by R,<R,<R, and
R,<R;<R; if real. On root parity in general, see Refs. 2 and
5.

From the explicit expressions (3.5) and (3.6) it foliows
that the roots satisfy

P1=Ry46: 3P,(4P, — 3a)’ = c /A, (4.1)
Pi=Ry;s: iﬁl[zoﬁ% — (36a + 1/A")p,
+2l? +a/A') = /A" (4.2)

At given 4, @, and c,, these equations are easily solved
graphically by curves representing the left-hand sides inter-
secting a horizontal line at the level ¢,/4 ’. Figure 4 gives an
overview of these curves over the interval [0,a] where the
physically relevant roots are located. The resulting root con-
figurations are easy to understand graphically, but their al-

C,

by add N.1r240
N30T

;_ & - Neyzaa

A s00
even
P,
- L) r k) 1
o as4 as2 3a/4

FIG. 4. Graphical determination of the physically relevant roots of f{7;) at
given 1 ', a, and ¢, (to scale). The even curves do not depend on the system
parameter 1 ', see Eq. (4.1), but the odd ones depend on 4 ' ina varying way.
Hence there is one even curve for given a and ¢,, but an entire family of odd
curves dépending on 4/, four of which have been drawn for significant val-
ues of A '. The roots are now obtained at the intersection(s) of any one of
these curves with a horizontal at the height ¢,/4".
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gebraic discussion is tedious. A forward glance at Figs. 5and
6 may help to avoid confusion.

Signal importance attaches to any confluence of two or
more roots, i.e., to multiple roots. Double roots of definite
parity correspond to extrema of the curves.

Two even second-order roots can exist: R, = Rg¢

= 3a/4 occurs at ¢, = 0, and R, = R, = a/4 occurs at

€1 = Cl even = A '@*/2. (4.3)

Both are conspicuous in Fig. 4.
Two odd second-order roots can exist: R;=R;
= Ta/10 + 1/304 ' occurs at

€, =Cloaa = (A'a — H)[49(A @) + YA 'a +1]/(54")?,
(4.4)

but for sufficiently small A '« this root will liebeyond p, = o,

as seen from Fig. 4; second, R, = R, = o always occurs at

Cl = c;,.odd = éaz + 2/1 'as; (4.5)
Multiple roots which are both even and odd are called

skew and require an intersection of the even curve with an
odd curve. When

a=a*=1/94", (4.6)

it is seen from Fig. 4 that there are two such intersections,
that both involve an extremum, and that both lie at the same
height ¢,/A ' = 5a°/2. Hence at @ = a* there are two skew
triple roots: R, =R, =R,=a/4 and R, =R, =R.=a,
and furthermore these occur jointly for ¢; = €] cyen = €1 0aa-

Two skew second-order roots are found at the end
points of [0,a]. Here R, = R, =0 occurs at ¢, =0 (and
coexists with the even R, = R,). Second, such a root lies at
a, but the confluence is R; = R if @ <a* and Ry = R if
a>a* (with the triple R; = R, = R in between at a = a¥,
when the other triple root happens to coexist as well).

Another skew second-order root lies inside the interval
[0,a], provided A,a > 1/24; it is seen from Fig. 4 that at the
critical value 1’ = 1/24a the odd curve just osculates the
even one at the origin. The required curve intersection is
found at the position I' = 2a/5 — 1/604 ’; the confluence is
R,=R, ifa<a* and R, =R, if a>a* (with the triple
R, =R, =R, in between at o = a*, when the other triple
root happens to coexist as well). As can just be discerned in
Fig. 4, this skew root happens to occur exactly at ¢; = €] ,44
so that it always coexists with the odd R, = R,; now it also
becomes clear that the latter lies inside [0,a] only if & > a*.

The values a*, ¢} o, and ¢} 44 (and in a trivial way also
¢; = 0and ¢} 4 ) are bifurcation values demarcating signifi-
cant changes in the configuration of the roots of f(5,) which
carry over into significant changes of the orbit in the poten-
tial well. As will be shown below, the conspicuous, simulta-
neous occurrence of multiple roots merely reflects the sym-
metry of the potential well, which allows for several orbits of
different orientations at the same 4 ', , and c,.

V. THE CONFIGURATIONS OF f{p,)

Since the coefficient of 55 in f(P,) is negative, see Eq.
(3.4), a qualitative graph of f(p,) can be sketched at once
when the locations of its real roots are known. They are best
deduced from Fig. 4 by the following procedure which
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emerges clearly from the algebraic classifications in the pre-
ceding section, and can also be justified in a very general
way.® At a given system parameter A, first select a value of
the integration constant «; then vary the other constant ¢, by
shifting a horizontal up and down in Fig. 4, and watch the
resultant movement of the intersections. The corresponding
configurations of f(p,) at the more important stages of de-
velopment are depicted in Figs. 5 and 6. Because of the exis-
tence of the bifurcation value at a* = 1/94 ', we must go
through this procedure twice at least, for a value of a below
and another above a*; the two cases are illustrated separate-
ly in Figs. 5 and 6.

The lowest relevant value of ¢, is always ¢, = 0. Then
the graph of f(P,) touches the p, axis from below at a skew
root R,=R,=0 and at an even double root R, = Ry

= 3a/4; see Fig. 4. Increase of ¢, raises both these maxima
above the axis, but the development is subtly different below
and above the a bifurcation; see Figs. 5 and 6.

Below the a bifurcation, let us assume for definiteness
that also @ > 1/244 ' is given; see Fig. 4 for the significance of
this. Then at small ¢, we have two small roots with R, <R |;
see Fig. 5(a). Upon raising c,, they will have another con-
fluence at 5, =TI, and after that, they split in reverse order
R, <R, asinFig. 5(b). If wechoose @ < 1/244 ', the abscissa
I" lies to the left of the origin and the root ordering is as in
Fig. 5(b) from the outset. When raising ¢, further, the simul-
taneous confluences R, = R, =a/4 and R= R, = qa are
formed at ¢; = €] o, NOW a ¢, bifurcation takes place: at
still higher ¢;, R, and R, become complex whereas R and R
emerge from a on the other side so that only R, and R, are
left inside [0,a], see Fig. 5(c). The confluence R, = R, fol-
lows at ¢; = ¢] o4 Which is the largest, physically possible
value of ¢, when a < a*.

0 AF a P

,t7nz R, G Re N
a

0' r‘/—\ a

/a, R, R, Re — Ry R~

b

N e T

A R R

FIG. 5. Some significant stages in the development of the graph of f(p,)
below the & bifurcation, @ < a* = 1/94 " (schematic). The figures assume
a>1/244" so that I lies inside the interval [0,a]. Three values of ¢, were
chosen in the ranges: (a) 0<c;<Cjoa; (B) €oaq <€ <Cheven; (€)
Cleven <1 <Coga-
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FIG. 6. Some significant stages in the development of the graph of f(5,)
above the a bifurcation, a* = 1/94 ' < @(schematic); " always lies within
[0,a]. Two values of ¢, were chosen in the following ranges: (a)
0 <) <€) oaa; (D) €loda <€ <MIN(C] eyen €] oaa )-

Above the a bifurcation, I" always lies to the right of
a/4, while R, increases more rapidly than R,, and a dip
forms between R, and R, as in Fig. 6(a). At ¢, = ¢} 44 the
confluence R, = R, =T takes place, and simultaneously
the dip touches the axis from above at R, = Ry = 7a/10
+ 1/304". At this first ¢, bifurcation, upon further increase
of ¢;, R, and R, emerge on the other side of I, and the odd
second-order root splits as in Fig. 6(b). After that, three
confluences are still possible. Whena* < a < 1/44 ', it is seen
from Eqs. (4.3) and (4.5) that ¢} .., <] oqq holds, and so
we reach simultaneous confluences R, =R, = a/4 and
Rs=Rg=a at ¢, = ¢} ¢y, followed by R, = R, = a/2 at
€1 = C}oqq» Which is the largest possible value. When
> 1/44", the relation between ¢] o, and ¢} ,q4 is the oppo-
site, and R, = R; occurs first at ¢] 44, followed by R, = R,
and Ry = R4 at ¢} .., Which now becomes the largest possi-
ble value of ¢,. In either case, we have a second ¢, bifurcation
between ¢] .44 and this largest value ¢} 44 OT €] cyen-

VI. CATALOG OF MOTIONS

Amplitude-modulated motions of the odd—odd kind are
easy to understand. As shown in Refs. 2 and 5, they are
precessing ovals, possibly with change of shape as in Figs.
2(b) and 3(b), but without orbit reversal.

All other motions in this system are tied to one particu-
lar ridge or valley, and thus are threefold degenerate (with
added mirror degeneracy about the ridge or valley). It turns
out that under a 60° rotation the root parities of such a mo-
tion do not remain invariant. For instance, as will be shown
presently, the libration in the 30° valley illustrated in Fig.
2(a) is even—even, but if we set up the same motion in the 90°
valley over the 7 axis, it becomes even—odd. This degeneracy
effect is a major nuisance in any algebraic discussion, and we
shall try as much as possible to circumvent it by reference to
graphs.

At the ends of their ranges, the amplitude-modulated
motions degenerate into constant-amplitude motions at
multiple roots of f. These c-a motions therefore play the role
of demarcations between dynamical ranges; a graphical
summary of all of them is given in Fig. 7.
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FIG. 7. A summary of all constant-amplitude motions in terms of their
amplitudes p, and p, (toscalefor 4’ = 2). Because of p, + p, = a, motions
with the same a lie on straight lines at 135° to the p, axis; the line corre-
sponding to the bifurcation a = a* is shown. Stable and unstable motions
are labeled s and u, respectively. The three stable valley oscillations are
represented by p, = 0 (motion in the valley along the # axis) and 5, = 3p,
(corresponding to in-phase motion in the + 30° valley and to antiphase
motion in the — 30° valley). The three top-of-the-ridge oscillations are
P, = 0 (motion along ridge over the £ axis) and §, = p,/3 (corresponding
to both the + 60° ridge and the — 60° ridge motions). These oscillations
change stability at the bifurcation points B and A, respectively. The stable
circular motion is represented by 7, = p,. The three unstable elliptic mo-
tions that exist only above a =a* correspond to p, = 75,/3 + 1/94'
(stretched along the £ ridge) and p;, = 25,/3 + 1/364 ' (representing both
motions along the + 60° ridge and the — 60° ridge).

A. Motions with ¢, =0

There are two algebraic possibilities arising from the
two double roots at p, = 0 and 3a/4, the former skew, the
latter even.

The first one, p, =0, implies p,=«. The motion is har-
monic and easily calculated from the equations of motion as

£=0, 7= (22)"?cos[(1 —ja — Y1 'a*)p + const],
k (6.1)

where p denotes the (scaled) time as in Ref. 2. This is an
obviously stable,* straight-line oscillation in the botton of
the valley that lies along the 7 axis; technically, it is a Case
(I) c-a motion of familiar type.>-

The second one, p,=3a/4, implies j,=a/4. Since the
root is even, this is a Case (II)** with a fixed phase relation
cos (2, — 2g;) = + 1, or g, — §,=0,7. There are now two
harmonic straight-line motions with the same frequency as
in (6.1), but with a 1:v3 amplitude ratio and their compo-
nents in phase or in antiphase, i.e., they are oscillations in the
bottom of the + 30° and the — 30° valley, respectively. In
Fig. 7 these stable valley oscillations are represented by the
lines p, =0 and p, = 3p,.

Increasing the amplitude of any of these oscillations will
eventually lead to an obvious soliton solution connecting
two opposite saddles of the potential via a straight path.
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B. Motions below ¢, bifurcation

Slight increase of ¢, beyond zero changes the straight-
line valley bottom oscillations into narrow oval librations
about the bottoms. The one about the 7 axis is even—odd
because in this orbit orientation a steady increase of the rela-
tive phase is required.>® The two in the + 30° valleys are
even—cven, with the phase difference oscillating around 0
and 7, respectively.”® Thus algebraically the three equiva-
lent motions appear quite different; however, the complica-
tion also harbors some insights.

First take the + 30° librations. They evolve from the
straight-line motion at the root p, = 3a/4 which for
0<€; <€} oaq SPits into the pair R, ¢ of Figs. 5(a) and 6(a).
Their evolution as ¢, grows appears uneventful; two particu-
lar cases are shown in Figs. 2(a) and 3(a). Still, there are
some minor features which we do not think important
enough to derive in print, but which can be glimpsed from
the dynamically identical #-axis libration.

The libration in the 7 valley evolves from the straight-
line motion (6.1) at the skew double root p, =0 which for
0 <€, < €] 0qq SPlits into two roots R, and R,. It then makes a
difference whether the given a lies above or below 1/244 ', as
emphasized in Secs. IV and V and in Fig. 4. If a < 1/244°,
then the critical value @ = 2a/5 — 1/604 ' lies outside the
interval [0,a], and R, < R, always holds. Nothing remark-
able happens as ¢, grows towards its bifurcation value. If @
> 1/244 ', however, I lies inside [0,a] asshownin Fig. 5. As
¢, is now increased from zero onwards, we have first R, < R,
and later R, <R, as above. It can be shown that there is a
corresponding minor change in orbit shape. At the interme-
diate state R, = R, =T it can furthermore be shown that
the envelope of the libration is a rectangle with straight sides.
This motion appears paradoxical, for at the double root I'
the amplitudes must be constant. Indeed they are, but as we
have elaborated elsewhere, for this c-a motion at a skew dou-
ble root inside the interval [0,a] the phase difference
between the two degrees of freedom is not constant so that no
stable closed orbit results and a libration persists; see Ref. 5,
Sec. IV D, Theorem 6 et seq. Exactly the same change of
orbit shape and the same intermediate stage in a rectangle
take place in the + 30° librations, of course, but are not
announced by algebraic peculiarities.

These valley librations have characteristic turning
points where the motion comes to instantaneous rest.>* In
Figs. 2(a) and 3(a), such turning points are used as natural
beginnings of the graphs. The motion begins as a narrow oval
which slides down towards the valley and widens as it does
$0, narrows again as it climbs the other slope of the valley,
then comes to a stop, reverses, and so on. When c, increases
towards its bifurcation value, the development of the librat-
ing orbit is noticeably different below and above the o bifur-
cation, as is readily understood from Figs. 4-6, and consider-
ing for simplicity only the 30°-libration amplitude-
modulated between R, and R,

Below the a bifurcation, see Fig. 4 and Fig. 5(b), the
amplitude at both ends of its modulation range tends
towards double roots Rg=R; =a and R,=R,=a/4.
Thus the motion tends from a long-lasting stage in an almost
straight line close to the £-axis ridge to an analogous stage
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close to the 60° ridge, with a briefer oval stage in between,
and back. At the bifurcation value ¢; = ¢} .., the motion
converts in infinite time between straight-line stages over the
ridges.

Above the o bifurcation, a double root approaches in the
middle of the modulation range, R;=Rs;=7a/10

+ 1/304 ", see Fig. 4 and Fig. 6(a). Now the fairly straight
stages close to the ridges last briefly, whereas the oval inter-
mediate stage in the valley lasts long and becomes rather
more circular. At the bifurcation value ¢, = ¢] 44 the mo-
tion converts in infinite time from an oval stage in the valley
through a brief stage close to a ridge, back to a valley oval
described in the opposite sense.

In Figs. 2(a) and 3(a) this different evolution of the two
valley librations can be anticipated clearly in the different
envelopes of the orbit, with a slim and a bulging waist, re-
spectively.

C. Motions above ¢, bifurcation

When ¢, is raised a little over the bifurcation value, the
energy becomes large enough for the motion to cross over
the potential ridges. The two valley librations just described
then become the narrow and the wide precessions illustrated
in Figs. 2(b) and 3(b), respectively. Both are odd-odd,
without turning points, and can only be set up from an initial
condition with nonvanishing velocity.”*

Above the a bifurcation, see Fig. 6(b), there are still two
more amplitude modulations possible: one even—even, hav-
ing p, within the range [0,I"], the other even-odd, with p,
not far from « all the time. These correspond to three libra-
tions, similar to the ones with the even—odd and even—even
ranges in Fig. 5(a), but this time the orbit librates over a
ridge, not in a valley. Figure 3(c) illustrates a typical in-
stance.

Raising ¢, still further, again above the a bifurcation, we
encounter the second ¢, bifurcation described at the end of
Sec.V.Incasea* <a < 1/44',atc, = ¢} ., thedouble roots
R,=R,=a/4and R; = R, = « are reached. The ridge li-
brations then contract into straight-line motions right on top
of the ridges; astonishingly enough, they are dynamically
stable, as is seen at once from Fig. 6(c). Increasing the am-
plitude of these motions again leads eventually to an obvious
straight-line solution connecting two opposite hilltops. In
the second case, @ > 1/44 ', the confluence R, = Ry = a/2
takes place at¢; = ¢} oq4 .- Now the precession becomes circu-
lar.

D. Motions at maximum ¢,

Foralla < 1/44°, ¢, reachesiits physically possible maxi-
mum at ¢} .qq When R, = R, = a/2 and no other real roots
of f(p,) areleft on [0,a]. The corresponding motion is circu-
lar, uniform, and stable; in Fig. 7 it is represented by the line
Py =P

For a > 1/44 ' this motion is still possible, but the maxi-
mum of ¢, is now ¢ ., , see Fig. 4, and the c-a motions at the
corresponding even—even and even-odd double roots are
stable, harmonic hence-and-forth oscillations on top of the
ridge backs; in Fig. 7 they are represented by the lines
Pr=p,/3andp, =0 (orp, = a).
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E. Summaries

Figure 8 summarizes the various bifurcations graphical-
ly in a plot of ¢,/a’® vs A 'a, based on Eqgs. (4.3)-(4.6).

As a complement to the bifurcations, we may also ask
for representative initial conditions which will produce the
various motions. The subject is treated briefly in Ref. 2, and
with great generality in Ref. 5. It is particularly easy to set up
a motion at a time when its amplitude modulation is at an
even root, for it then goes to rest in the (£,7) plane. The
release points for the various librations are easily calculated,
following Ref. 2, and are reproduced in Fig. 9.

The precessions, which never come to rest, can be set up,
for instance, by release from a point on the positive £ axis
with a purely transverse velocity 9. The amplitude is then at
an odd root. Figure 10 shows the pertinent value of 7 plotted
against £. As an incidental result, the same plot also yields
other motions having an odd root of the amplitude modula-
tion which corresponds to a transverse crossing of the £ axis:
the ridge libration over the £ axis, and the valley libration
along the 7 axis.

F. Complements on the ¢, bifurcation

When a < a* the ¢, bifurcation occurs at ¢} ..., With a
graph of f(f,) intermediate between Figs. 5(b) and 5(c),
having two double roots R, = R, and R, = R, where the
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FIG. 8. Graphical summary of bifurcation values of ¢, and a. In these plots
of ¢,/a% V8 4°a, €] yen A0 €} o4, are represented by straight lines given by
Eqs. (4.3) and (4.5). The ¢} .4, appears almost straight, but it is curved, see
Eq. (4.4), and makes a contact at the « bifurcation value a*; it continues
towards the left as the dashed line which demarcates a minor shape differ-
ence between the valley librations, as mentioned in Sec. VI B,
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FIG. 9. Representative initial conditions at an even root: release from rest in
the (£,7) plane, to yield librations in valleys and over ridges. To obtain the
complete figure with sixfold symmetry, adjoin mirror images on the left,
and below the £ axis. Constant values of « lie on circles about the origin; the
bifurcation circle for a* is shown. The broken lines demarcate the minor
shape difference of the valley librations mentioned in Sec. VI B.

curve touches the p, axis from above. The corresponding c-a
motions are evidently oscillations on top of the ridges which
coexist with the conversion motions leading towards a ridge,
and they are orbitally unstable because the slightest change
in ¢, results in either a valley libration or a precession. They
correspond to the “unstable” parts of the lines p, = p,/3 and
D, =0in Fig. 7. Entirely analogous, unstable ridge oscilla-
tions occur in the N = 4 system for the parameter range
1<A <3 (Ref. 2).

When a > a* the ¢, bifurcation occurs at ¢{ .,y and ex-
hibits unexpected features which can only be understood

.;’

valley
libration

libration

J279X'

FIG. 10. Representative initial conditions at an odd root: transverse launch
upwards from the £ axis, to yield counterclockwise precessions, librations
over the £ ridge, and librations in the 7 valley. Constant values of a lie on
circles about the origin; the bifurcation circle for @* is shown. The broken
line demarcates the minor shape difference of the valley librations men-
tioned in Sec. VI B. .
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with reference to the general theory of relative phases devel-
oped in Ref. 5, especially Sec. IV D 4. The graph intermedi-
ate between Figs. 6(a) and 6(b) has the .odd double root
R, = R; and the skew R, = R, =TI'. The c-a motion at the
former is readily seen to be an ellipse stretched along the £
ridge. The c-a motions at I' must likewise be elliptical but
over the 4 60° ridges, on account of the symmetry degener-
acy. However, the motions neighboring to these ridge el-
lipses at values of ¢, slightly below ¢] 4 are all valley libra-
tions with long-lasting elliptical stages in the valleys, not
along the ridges. The explanation of the paradox is that the
relative phase of an unstable c-a motion at a skew root inside
[0,a] is not continuous with the relative phase of the neigh-
boring motions, see /.c. Theorem 4. As ¢, -] o4 from be-
low, the orbit accordingly shifts in a discontinuous manner
from an orientation mainly along a valley, to a permanent
orientation along a ridge. It does so for the odd—odd motion
over the £ ridge as well, of course, but in this case the discon-
tinuity arises from the sudden contact of the dip in Fig. 6(a)
with the axis, and cannot be deduced from the quoted, gen-
eral theorem which applies at the skew root " only.

These remarkable elliptic motions are represented by
the lines p, = 2p,/3 — 1/364' and 5, =7p,/3 + 1/94" in
Fig. 7. They are orbitally unstable, and coexist with obvious
conversion motions that tend to any of the elliptic orbits. As
¢, is raised above ¢} .44, two different developments are possi-
ble, depending on the phase changes which are imposed at
the same time. In one, the ellipse stretches out along the
ridge, and a ridge libration results. This sequence is reminis-
cent of the ¢, bifurcation in the N = 4 system with A>3
(where the ellipse reduces to a circle).? However, the ellipse
can also shrink in the ridge direction, and then a (wide)
precession results.

The complicated course of the ¢, bifurcation above
a = a* is not merely an artifact of the slow-fluctuation
method; we have verified it by means of numerical integra-
tions of the exact equations of motion in the potential (2.1).

G. Complements on the a bifurcation

When a = a* and also ¢, = €] yyen = €} oq4, then f(B,)
possesses two skew third-order roots: R, =R,=R,
=a/4 =T and R; = R; = R = a, see Fig. 4 and also Fig.
7 where these confluences correspond to the points A and B.
The corresponding c-a motions are top-of-the-ridge oscilla-

FIG. 11. The orbit of the curved soliton connecting the opposite hilltops at
( — 1,0) and ( + 1,0) for selected values of A . Theinitial values of 7(0) are
0.098 8445, 0.254 5752, 0.456 4851, 0.552:3317.

M. F. Augusteijn-and E. Breitenberger 1726



0.54

FIG. 12. Two orbits bracketing the curved soliton for 4’ = J. The initial
values of %(0) are 0.254 0000 and 0.255 0000.

tions, and are clearly unstable. There are also conversion
motions tending towards these. Qualitatively, all these mo-
tions are similar to the ones at ¢ bifurcation below a*. How-
ever, above a* the ridge oscillation is found to be orbitally
stable, whereas the aforementioned, elliptic ridge orbit has
emerged out of the ridge oscillation below a*, and has inher-
ited the latter’s instability. This is a typical « bifurcation
pattern; see Ref. 6 for a general description.

Vil. SOLITONS

The obvious, straight-line soliton solutions connecting
two opposite saddles or two opposite hilltops are beyond the
range of validity of the slow-fluctuation method, but as men-
tioned earlier, they are reached by a natural extrapolation of
oscillatory straight-line solutions at much smaller ampli-
tudes. It is one of the fringe benefits of the method that other
c-a solutions, too, can by extrapolation yield clues to the
existence of solitons which may be of quite unexpected na-
ture.

Begin with the elliptic top-of-the-ridge motions de-
scribed in Sec. VI F. For the sake of discussion, take the one
over the & axis. When its amplitude is increased, it need not
remain elliptical, but the orbit should remain a closed curve
with mirror symmetry about the » axis. In the limit, its ex-
tremes should reach the two hilltops at ( —1,0) and
( + 1,0). Thus, the existence of a curved soliton connecting
opposite hilltops is worth investigating. This was done nu-
merically. The condition “rest at hilltop” determines the to-
tal energy; an orbit can then be launched transversely from
the 7 axis with the velocity corresponding to the given ener-
gy and the initial (0), and can be calculated from the exact
equations of motion. By trial, error, and interpolation
between over- and undershoot, we did indeed find curved
soliton solutions which bear a slight similarity to one
known® in the N = 2 system. Some orbits are reproduced in
Fig. 11. This curved soliton exists only for a finite range of
values of 4, from 0.283 to 0.454 (to three decimals). The
lower bound is expected because of the lower bound 4’
= 1/9a for the elliptic slow-fluctuation solutions (which
would become A ' = 2/9 if the slow-fluctuation method were
still valid for a motion coming to rest at a hilltop ). The upper
bound results because at high A ' the required 7(0) can no
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FIG. 13. Two curved solitons connecting nonopposite hilltops when 4’ = 3.

The one symmetrical about the 7 axis was initiated from
7{0) = 0.745 253 55; the one symmetrical about the £ axis was launched
from £(0) = 0.755 683 38.

longer lie between the two saddles on the 7 axis. This range
of allowed values is rather narrow; the curved soliton might
easily be overlooked without the hint from the slow-fluctu-
ation method. We emphasize that this kind of numerical
experimentation requires fairly high precision because of the
solitons’ evident instability. In Fig. 12 we show for4 ' = 3/9
two orbits launched with a difference of only 0.001 in 7(0)
which remain virtually indistinguishable from the true soli-
ton up to almost the hilltop, but then veer off sharply in
opposite directions.

In a similar fashion we may extrapolate from the circu-
lar precessions of the slow-fluctuation catalog. Such an orbit
could at larger amplitudes become somewhat hexagonal,
possibly also triangular. Accordingly, one may surmise the
existence of curved solitons connecting a hilltop with an ad-
jacent and with a next-but-one hilltop. Such solitons exist, in
fact, and examples for A " = 3/9 are shown in Fig. 13. We
confine ourselves to this demonstration and leave out all
further detail.
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On head-wave amplitudes
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The head-wave contribution to a reflection is investigated by two different methods and it is
shown that the new result presented by Lerche and Hill [J. Math. Phys. 26, 1420 (1985)] for
the head-wave amplitude is in error due to the use of an inappropriate mathematical method.

I. INTRODUCTION

In arecent paper, Lerche and Hill' have investigated the
amplitudes of reflections and head waves from a rough inter-
face. As a prerequisite, they considered a smooth interface
and derived an asymptotic result for the amplitude of the
head-wave contribution (LH30—henceforth we use the ab-
breviation LH to refer to Lerche and Hill and equations
therein). They comment that their result differs from the
expression in Aki and Richards®> [Eq. (6.25)] by a factor
(2/¢)'/? and that the evaluation of Aki “involves further
approximations whereby the factor (2/e)'/? is lost.” This
result and statement are surprising as the asymptotic results
for the head-wave amplitude derived by a variety of distinct
techniques, e.g., asymptotic ray theory,”> Cagniard—de
Hoop-Pekeris method*® as well as the usual branch cut
evaluations by asymptotic techniques,>*'® agree. Inciden-
tally, we find that expression (LH30) is in error by a factor
of (2¢) 2 [not (2/¢)'/?], as the result in Aki and Rich-
ards” also contains an error of a factor of 2. In this paper, we
rederive the head-wave amplitude by two techniques (to es-
tablish beyond doubt the correct result) and identify the
source of error in LH.

Il. BRANCH-CUT EVALUATION

The expression for the pressure field of the reflected
wave is given by

®© ik, (z+ zy)
P = z'f Bﬁi[iR—)ke————KdK,
0

i

(LH6)

where the variables are defined in LH and for brevity we
have not substituted for the reflection coefficient, B (LH5).
This integral can be decomposed and the head-wave contri-
bution comes from the term
Lo~ ,-(7,,4)( s, )‘/2 "2 d@ cos O(sin 9)'/?
27R o a+bsin? @

X (Sinz ec _ Sinz 9)1/2eiNcos(6—¢)
=e‘i(ﬂ/4)( ws, )1/2 " d6 cos O(sin 8)'/?
27R o a+ bsin’ 8

X exp[iN cos(8 — @) + 4 In(sin® 6, — sin® 0) ],
(LH18)
where, using LH’s notation, we have made some trivial sub-

stitutions to simplify. LH evaluated the second expression
(LH]18) by finding the stationary points of the exponent.

(LH14)
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The traditional method of evaluating the branch cut integral
in expression (LH14) is to change the variable of integration
to the branch cut radical,”' i.e.,

v = (sin’ §, —sin? g)!/? (1)
and convert it to a saddle-point integral. With this substitu-
tion (1), the exponent in (LH14) becomes

Y =IN[cos (1 —sin’ g, +1*)!/?

+ sin #(sin® 6, —+*)'/?], (2)
which has a stationary point, i.e., dy/dv =0 at v = 0. At
this saddle point we have

Y =iNcos(¢—6.)
and

d? iNsin(¢ — 6.)
ro %) (3)

dv? sin 8, cos 6,

The integral can be evaluated using the principle of station-
ary phase without distorting the path of integration which
runs fromv = sin 6. tov = Qand thentov =i cos 4. Using
the second-order saddle-point method, we obtain the asymp-
totic result

sin 6, cos 6 32
e Lm0 0 )

ws, R \psin(é—6.)
y exp[iN cos(6, — @) ]
a+bsin?6, '

This expression should be compared with (LH27) and is
seen to differ by a factor — (2e)!/? [the negative sign ap-
pears to be a trivial error corrected in (LH30) ]. The expres-
sion for the head-wave contribution is then

4)

2 5 _exp(iwT, )

® p, s —s2 R 1/2f 3/2
compared with (LH30). This expression (5) agrees with
Akiand Richards® [Eq. (6.25) ] apart from a factor of 2 that
has been lost between Eqs. (6.23) and (6.24) of that book.
Next we discuss why LH’s evaluation is in error and then
confirm expression (5) by another method.

(5)

P, head —

Ill. SADDLE-POINT EVALUATION

To evaluate expression (LH18), LH first determine the
stationary points of the exponent. The significant one exists
at
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0,=0, +i/2Nsin(¢ — 6,) + O(N ~?) (LH22)
and the second derivative is
2
daf 2N %5in*(6, — @) + O(N). (LH26)

The contour of integration is distorted to pass through the
saddle point 8, and the integral evaluated by the saddle-
point method. Unfortunately, although 6, is a stationary-
phase point, the saddle-point method is inappropriate. A ba-
sic requirement for the saddle-point method is that the
Taylor expansion of the exponent at the stationary-phase
point should be a good approximation within the width of
the saddle point where the main contribution to the integral
arises. From the second derivative of the exponent (LH26),
we see that the width of saddle is of order 1/|N sin(8, — ¢)|.
Higher derivatives of the exponent are given by

Y = — = DIINsin*(§ — 0,01+ O )],
(6

It is readily apparent that within the width of the saddle
point, all terms in a Taylor expansion of the exponent are of
similar magnitude and importance. Notice that the distance
betweerrthe saddle point 8, (LH22) and the branch point 6,

is comparable with the saddle width, and at the branch point
the exponent is singular. The Taylor expansion is therefore
not valid over the required range. The saddle-point method
cannot be used to evaluate the integral and LH’s result
(LH27) is in error. Rather than leading to a “small” correc-
tion by (2/e)!/2, their technique is inappropriate and leads
to a significant error of (2¢) ~ /2

LH have evaluated the integral I, by a technique equiva-

lent to the Stirling approximation for the gamma function.
Then we have

I‘(n+l)=f X"e *dx (7a)
(1]
=n"e‘"f e~ VM= gy ()
= (2nm)"*n"e " (7¢)

Expression (7a) is the integral definition of the gamma func-
tion which is evaluated by the second-order saddle point ap-
proximation (7b) to give the Stirling approximation (7c).
This approximation is valid for n» 1 when the saddle point
atx = n is well away from the origin. But for n = 1, we know
I'(3) = 7'/2/2 exactly, whereas the Stirling approximation
(7c) gives (7/2e)'?, i.e., a factor of (2/¢)'/2. The other
factor of 2 comes from approximating the integral on both
sides of the branch point by the semi-infinite integral [as in
(7a)].

IV. THE CAGNIARD-DE HOOP-PEKERIS METHOD

An alternative technique for investigating the head-
wave contribution is the Cagniard—de Hoop—Pekeris meth-
od.*® Rather than evaluate (LH6) asymptotically, we take
the inverse Fourier transform with respect to frequency and
obtain the impulse response. The head-wave contribution
can then be investigated by a first-motion approximation,
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i.e., a Taylor expansion about the head-wave discontinuity,
and is found to be the inverse Fourier transform of (5).

We outline very briefly the Cagniard technique. Using
the symmetries of the Bessel function, expression (LH6) can
be rewritten (w real)

. ® (1) 0g,(z + 20)
Py =z_|a)_|_J' B,H° (wpR)e
1

pdp, (8)

.where wg, = k, and wp = K. The p-contour is distorted so

that Im( pR + ¢,(z + z,)) = 0, the so-called Cagniard con-
tour. We use

LJ H{V(aw)e~ ' dw

2
———F———— for |t|>a
— 1T(t2—02)1/2 | |> (9)
0, for |t|<a,

to take the inverse Fourier transform of (8) and obtain

p. =29 Bo__H(—pR—q,(z+2))
T wadt ) g -z 42 — PRV

(10)
where by symmetry we have restricted the Cagniard contour
to the fourth quadrant. This expression is zero for t < 7,, (as
all terms in the integrand are real) and nonzero for > 7, as
B becomes complex at the branch point, p = s,. Expanding
about p =5, for ¢ 2 7,,, the important terms in the integrand
are for the factor (p — s,)"/2 from the branch cut in B, and
(t — 74 —L(p —s5,))""/? from the denominator. Treating
the other terms as constant and evaluating the integral, we
obtain

(1)

t—Th),

s 1

Presa = ——zpﬂz- sz 2S2 R 1/2L3/2H(
which is consistent with the inverse Fourier transform of
(5). Including higher-order terms in the Taylor expansion
of the integrand (10) results in contributions to the head
wave with higher-order discontinuitles, e.g., (t—7;)
X H(t — 7,), but this does not modify the asymptotic result
(5).

V. CONCLUSIONS

It has been shown that the new result given by Lerche
and Hill' for the head-wave contribution to a reflection is
incorrect by a factor (2e¢) ~"/2. The correct result is con-
firmed using two different but standard techniques. The er-
ror occurred in Lerche and Hill due to the inappropriate use
of the saddle-point method. Their method is equivalent to
using the Stirling approximation for I'(n + 1) with n =1
[introducing an error of (2/¢)"/?] and reducing an integral
on both sides of the branch point to one side (causing a
further error of 1). Fortunately the error in Sec. II of LH
does not affect the rest of the paper. The results in Sec. III are
still valid."
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In this paper the results of a search for bilinear equations of the type P(D,, D,)F + F=0,
which have three-soliton solutions, are presented. Polynomials up to order 8 have been studied.
In addition to the previously known cases of KP, BKP, and DKP equations and their
reductions, a new polynomial P = D_D, (D,* + v/'3D,D, + D,*) + aD,* + bD, D, + cD,” has
been found. Its complete integrability is not known, but it has three-soliton solutions. Infinite
sequences of models with linear dispersion manifolds have also been found, e.g.,

P=D,™D, D,?*, if some powers are odd, and P= D, ¥D,V(D,* — 1)*, if M and N are odd.

I. INTRODUCTION

There are several methods for studying integrable non-
linear evolution equations (NEE’s), the most famous being
the inverse scattering method. However, there are still no
systematic methods to approach NEE’s that are not com-
pletely integrable, but which nevertheless do have some nice
properties. Such “almost integrable” systems may be quite
important in practice. For these the heavy machinery asso-
ciated with complete integrability may not be applicable. It
is therefore useful to study also other approaches where less
demanding assumptions can be made.

One interesting alternative method was introduced by
Hirota' 15 years ago (for reviews see, e.g., Refs. 2 and 3).
The fundamental idea in Hirota’s formalism is to use some
dependent variable transformation to put the equation in a
form where the unknown function appears bilinearly. In the
process one usually has to extract one or two derivatives, For
example in the case of the Korteweg—de Vries equation

Upy — OUU, +u, =0, (H

one first introduces a new dependent variable v by u = v, .
Then (1) can be written as

O [Venx — 3(v,)* + 0,1 =0. 2)
Finally with the dependent variable transformation’
u= —23.logF (3)

orv= - 29, logF, we find that the part in square brackets
in (2) vanishes provided that F satisfies the equation

D,*+D.D,)F-F=0, 4)
where the operators D, and D, are defined by
PWD,, D)F-F

=P(0, — 0,0, — YF(X,)F(X't") oot me» (5)
for an arbitrary polynomial P. (For a list of properties of the
D operator, see Appendix I of Ref. 4.)

A bilinear form has been constructed for many other
completely integrable systems by Hirota and others. From
their results one can make the conjecture that all completely
integrable NEE’s can be put into a bilinear form (this will

sometimes involve auxiliary independent and dependent
variables, see below). The converse, however, is not true: a
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bilinear form can also be constructed for many equations
that are not integrable. To be precise, the bilinear formula-
tion guarantees only the existence of two-soliton solutions
(see Sec. IT). So in this sense Hirota’s bilinear formalism is
somewhere between complete integrability and complete ar-
bitrariness.

In this paper we report the results of a search for bilinear
equations of type

P(D,,D,)F-F=0, (6)

which have three-soliton solutions. To set the stage we list
here those previously known completely integrable NEE’s
that lead to bilinear equations of type (6). For the Boussin-
esq equation

Uy +6(U*) o + 10, —u, =0, N
one uses the dependent variable transformation

u=2a,logF, (8)
and after extracting two x derivatives [c¢f. (2)] one ob-
tains>®

(D,*+D,>—D*F-F=0. )]
For the Sawada-Kotera equation’
Uprer — 15Ut — 15u u, +450%u, +u, =0,  (10)
the substitution (3) and extraction of one x derivative
yields”®

(D.°*+D,D,)F-F=0. (i)
The shallow water wave equation of Hirota and Satsuma®

u,‘x,+3uu,—3u,ju,dx'~—u,—u,=0, (12)

yields with (8)

(D,°D, —D,2—D.D,)F-F=0. (13)
The above equations have two independent variables, x and
t, but bilinear equations have also been constructed for some

(2 + 1)-dimensional equations. The most famous of these is
the Kadomtsev—Petviashvili (KP) equation

Usxxx + 6(u2)xx + Uy :t 12“)‘)’ =O’ (14)
which yields with (8) (Ref. 10)
(D,*+D,D, +12D>)F-F=0. (15)
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The bilinear form of a given integrable NEE is not al-
ways as simple as the ones given above. For the modified
KdV equation

v, + 600, + V. =0, (16)
Hirota proposes™'! the independent variable transformation
v= —id, log (f/f*), (17)

which yields a pair of bilinear equations
(D, + D )f f*=0,
D2 ff*=0, (18)

for the two dependent functions, f and its complex conju-
gate.

Completely integrable NEE's come in hierarchies and
the above single equations are the simplest bilinear equations
of the hierarchy. To give a bilinear formulation for the other
members of the hierarchy one has to add new independent
time variables and new equations.'*"*

Recently the bilinear formalism has received a far-
reaching interpretation by the Kyoto school.'® They have
related several hierarchies of integrable bilinear equations to
Kac-Moody algebras. An important ingredient in this ap-
proach is the use of an infinite number of time coordinates in
a certain well-orchestrated manner (this has already ap-
peared in textbooks, see Ref. 14). In this approach the most
basic system is the KP hierarchy, whose single-equation
member is the KP equation (15) above. Many other equa-
tions can be obtained from these basic hierarchies by certain
reduction methods.'*!>1¢

As was mentioned above, any equation that can be writ-
ten in the bilinear formalism has two-soliton solutions, but
the situation is much more complicated even for three-soli-
ton solutions. Ramani has studied'” the integrability of var-
ious NEE’s as mirrored by the Painlevé analysis and com-
pared it with the existence of three-soliton solutions. He
draws the conclusion that the Painlevé property and the ex-
istence of three-soliton solutions go hand in hand, suggesting
the conjecture that the existence of three-soliton solutions
implies complete integrability. An interesting new model is
found in this process

(D,°+ DD, + kD?)F-F=0. (19)

It passes the Painlevé test precisely for k = — 1, which is
also the only value for which it has three-soliton solutions.

In this paper we present results of a search for bilinear
equations of type (6), which have three-soliton solutions,
The search extended up to polynomials P(D_,D,) of total
degree 8. Surprisingly enough one new equation was found
already at degree 4. Some of the results generalize to higher
dimensions. The extensive calculations were done with a
computer, mostly using the symbol manipulation language
REDUCE.

The paper is organized as follows: In the next section we
show that all NEE’s that can be put into the bilinear form
(6) have two-soliton solutions, and after this derive the
three-soliton condition (3SC). In Sec. III we discuss how
the condition can be formulated in the language of algebraic
geometry. The method of classification, which proceeds
from monomials to homogeneous polynomials to general
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polynomials, is presented in Sec. IV. The main search is done
in two dimensions, but the results are extended to higher
dimensions in Sec. IV F.

Il. PROPERTIES OF BILINEARIZABLE EQUATIONS

Hirota used the bilinear formalism to construct closed
form multisoliton solutions for various systems. Most PDE’s
have traveling wave solutions but only in exceptional cases
do they have solutions where these traveling waves scatter
elastically, i.e., are true solitons. An important result is that
if the equation can be put in a bilinear form it will always have
at least two-soliton solutions,® as we will now show.

Let us consider a bilinear equation of the form (6). To
get a single soliton solution we take for F the exponential
ansatz

F=14¢", n=px+Qt+m, 20
where p, {1, and m are constant parameters. ( For generaliza-
tions, see Refs. 18-20.) Note that ¥ does not have a lump-
type shape, but « defined by (3) or (8) does have. This Fisa
solution of (6), provided that the parameters p and ) of the
soliton are chosen so that they satisfy the dispersion relation

P(p,Q) =0. 21
At this point we also get some mild conditions for the poly-
nomial P: It must be even and without a constant term

P(D..D)=P(—-D,—D,), P0)=0. (22)

A two-soliton solution can always be constructed for
(6). As an ansatz take

F=1+¢€"+ e+ Be"t"™, (23)
where
n,=px+Qt+m;, 24)

for each i = 1,2. This solves (6) if (21) holds for each pair
(p;,Q,;) and if the new constant B,, is chosen to be

B, = —P(p,—pQdy — Q,)/P(p, + P22 + 82,) . (25)

This method of constructing a two-soliton solution
works for all nonlinear equations that can be cast in the
bilinear form (6) with (22). However, when the ansatz (23)
is extended to three or more solitons we get stringent condi-
tions for the polynomial P.

For the general N-soliton solution Hirota starts with a
generalization of (23) and writes F in the form?®

(N) N
F= z eXP[EAijﬂé#j + ou’in:'] ) (26)
1

=01 i>j i=
where the n; are given as before in (24). When (26) is substi-
tuted into (6) we obtain at first order in ¢" the condition
(21) for the constants p;, {,, i = 1,...,N. The constants 4
are determined at second order in ¢” by the analog of (25)

expAd,; = — P(p, —p;, Q% — Q,)/P(p; +p,, 0 + L) .
2N
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At higher orders one obtains conditions of the type

S[Pn]l= P(ii o.Pi zn:l a,ﬂk,)

o= +1 =1 i=
(n)
X[ Plop, — 03P 918k, — 038 )00, =0,
i>j
(28)

for each n = 1,...,N, and k,e{1,..,N} with &, > k; for i>j,
and for all p,, Q, subject to (21). [ Note that forn = 1 or 2
Eq. (28) is satisfied automatically.] Equation (28) is to be
regarded as a condition on P rather than on the parameters
P -and ., therefore it is sufficient that the indices &; also
range from 1 to n, and k; and k; may in (28) be replaced by i
and/, respectively. Equation (28) and the preceding calcula-
tions generalize immediately to a higher number of param-
eters used in multidimensional equations.

For a three-soliton solution one gets the first nontrivial
conditions form (28) (n = N = 3), the three-soliton condi-
tion (3SC), which is the main subject of this paper.

The 3SC was studied numerically by Ito?' for some spe-
cific cases. As a new result he found that a generalization of
(13), namely

P=D.’D, +aD,*+bD,D, + cD,*+dD,D,, (29)

also satisfies (28). ‘
Recently (28) has been studied in Ref. 22. In that paper
a multitime approach was used with

n= Z ( _ l)rk2r+1t2’+1 .
r=0
This choice is related to the KdV family, since in two dimen-
sions it implies p = k, @ = — k3, which is clearly a solution
of the KdV dispersion equations p* + pQ =0 [cf. (4) and
(21)]. In this paper no such specific relation is assumed
between p and 2.

lli. FORMULATION OF THE PROBLEM IN THE
LANGUAGE OF ALGEBRAIC GEOMETRY

A. General discussion

According to the previous section the N-soliton condi-
tion has the following formulation.

F1: A bilinear equation P(D, ,D,)F -F = 0 has N-soli-

ton solutions, if the polynomials S[P,n](x,t) (n = 1,...,N)
derived from P(X,T) according to (28) vanish at points
(x,t) for which P(x,,t;,) =0foralli = 1,...,n.
[For clarity we have changed the notation from (p,,Q};) to
(x;,t;), and also denoted x = (x,,...,x, ), etc.] Problems of
this type, relating the zero sets of various polynomials, are
best formulated in the language of affine algebraic geometry.
We will start by recalling some basic definitions.”

The ring of polynomials in the variables X and T over C
will be denoted by C[X,T]. The ideal generated by a polyno-
mial P(X,T) is given by (P) = {PQ |QeC[X,T]}. For the
affine space we take 4 = C? (where the vector space proper-
ties are ignored). A given PeC[X,T] defines an affine mani-
fold ¥, in A by '

Ve ={(x,t)ed |P(x,t) =0} . (30)
In the present context the algebraic curve ¥, will be called
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dispersion manifold. Instead of the polynomial P we may
here take the ideal (P ) generated by it, and define, in general,

V; ={(x,t)ed |Vpel, p(x,t) =0}. (31)

Conversely, the polynomials that vanish on ¥, form an ideal,
I(V;). In general we have ICI(V;).

The previous definitions were given for one polynomial
of two variables, but they generalize immediately to any fin-
ite number of polynomials in a finite number of variables.
Let us next take C[X,T] = C[X,,...Xy, T},...,Tx], into
which the polynomial S[P,N] in the N-soliton condition be-
longs. The corresponding affine space is C*. The dispersion
manifold ¥, (30) can be embedded into C?¥ in N ways:

Vp® = {(x,1)eC? |P(x,,t,) = 0}, (32)
for i = 1,...,N. Let us also define V5 by
Ven = {(x,0)eC*¥ |P(x,,t;) =0,V i = 1,...,N}

=0V, (33)

With these definitions we get a second formulation e-
quivalent to F1:

F2: The polynomial P satisfies the N-soliton condition
iff S [Pn]el(Vp,), forn=1,..,N.

Itis important at this point to realize that the correspon-
dence between the polynomial P and the ideal I( ¥ ) is not
1-1. So although the explicit form of the potential is needed
to construct S[P,N1, only the zero set of P is of importance
when we consider the ideal generated by ¥ 5. To clarify this
point we have to introduce one more definition. For an ideal
I'in the ring R its radical ideal v/7 is defined by

vI={peR |Ins.t.pel}. (34)

We observe (Ref. 23, p. 22) that v I=I(V}).

Thus for a given polynomial we must construct its radi-
cal ideal. Since the polynomial ring C[X,T] is a unique fac-
torization domain, the polynomial P(X,T) can be decom-
posed uniquely into irreducible factors as

P(X,T) = constX[] Q, x,n", (35)
j

where each @, is a monic (i.e., leading coeff. = 1) irreduci-
ble polynomial. The irreducible affine manifold ¥(Q) corre-
sponding to the irreducible polynomial @ is called an affine
variety; V(P) = U,¥(Q,). [The overall constant in (35)
can be omitted since it factors out in the definition of the
dispersion manifold and in the N-soliton condition. ]

It will be useful later to combine those factors that have
the same multiplicity »;, and write P as

PX,T) = H P,(X,T)", wheren,>n, fori<j. (36)
i=1
For later use we introduce also the notation H, for the lead-
ing homogeneous part of P,, while the leading monomial
(having the highest power of X) of H, is denoted by M,.
Associated with P we define
VP =[] gXD =[P XD . 37
J i

Clearly v/ P(x,t) = 0iff P(x,t) =0, thus ¥V, =V, ,, in fact
I(Vp) = (VP)=v(P) (Ref. 23, p. 22).
For our final formulation we need the following.
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Theorem:

I( VP,n) = {Z ‘/P(XUT‘,)K,,,,(X;T)

fe== 1

K,,,,.eC{X,T]}.

Proof: As a consequence of Hilbert’s Nullstellensatz we
can write the rhs as

217D =FIU Vo) =3 NIF ™)
i i J i d
while for the lhs we obtain

I(Vp,)=I(NU VQ,(i)) =N--NIN V‘zj(i)) ,
iy J oo
where we have used the property I(U, V) = N I(V,).
For the next steps we have to use the fact that the ¥, ’s with
different /’s have polynomial conditions that depend on dif-
ferent sets of variables. Then N, ¥, ” can beinterpreted asa

Cartesian product of the affine varieties ¥, and in such a

case we have I{(V X W) = {(I(VYUI(W)) (Ref. 24, p. 86).
Thus if the I(V (?)’s are interpreted as ideals in the common
ring C[X,T] we obtain

NV ) =T I(¥g, ).

Again, if the variables appearing in the generators of / are
different from those appearing in the generators of J and X,
then we have the distribution law 74+ JNK = (I +J)
NI + K). Using it repeatedly we conclude the proof. W

With this result we can finally write the N-soliton condi-
tion in a computable way as follows.

F3: The polynomial P(X,T) passes Hirota’s N-soliton
condition iff we can write

S{Pn]= Z VvV P(X,T, K, (X,T),
i1
for n = 1,...,N with some polynomials K, ;,cC[X,T].
Note that the original polynomial P enters in the left-hand
side, but only its radical on the right-hand side.
In the special case of three-soliton solutions we get just
one extra condition, namely (38) forn = 3, i.e,,

(38)

S{P3]1=vPX,T)4(X,T)

+ VP, T)B(XT) + v P(X,T)C(X,T) .
(39)

There is another, perhaps more intuitive, way to arrive
to (39). Let us choose three points (a',b)eV,, i = 1,2,3,
corresponding to the three solitons. We embed them in C6 as
(a,b) = (a',a%a’b",b2,b>)eV, ;. There will then be some;
so that [cf. (32), (35)]

(ab)en Vo D=NV(j,).

As we let each (@',b’) vary independently over ¥V, we see
thatitis enoughif S[P,3] vanishesin V(j )N V(j,)NV(J5)
for all possible choices of the three j,’s. But the union over
these choices yields nothing but V,; as defined in (33), so
the previous result is again obtained.
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B. Interpretation for the computer

To test whether S[P,3] can be written in the form (39)
one could, in principle, substitute a sufficiently general an-
satz for the polynomials 4, B, and C and try to solve for the
unknown coeflicients. However, S[P,3] is so complicated
even for rather simple polynomials that this approach is, in
practice, impossible. What was done instead was to interpret
Eq. (39) using a rewrite rule. For each i we took the leading
monomial v M(X,,T;) of vV P(X,,T,) and replaced it every-
where in S[P,3] by the expression VvVM(X,,T;)

—V'P(X,,T;), until no factors of v M(X,,T;) appeared in
the expression, or it vanished. For example, in the KdV case
it means replacing X;* by — X, T, for each i wherever a fac-
tor of X;* can be extracted. Evidently, S[P,3] vanishes in this
process if and only if it can be written as in (39). Of course
the substitution must usually be made several times until all
factors of VM (X,,T,) disappear. In REDUCE this is accom-
plished using a LET statement.”

Most of the computations were done using computer
algebra systems. The simplest problems were solved using
muMATH in a PC computer, for more complicated ones we
used REDUCE, first in DEC-20 and later in IBM 3081.

IV. THE METHOD OF CLASSIFICATION
A. Preliminary remarks

It is clear that the property of passing 3SC is invariant
under any nonsingular linear change of coordinates. 1t is
useful to eliminate part of this freedom by fixing the coordi-
nate system.

The coordinate system is fixed in the following manner:
Let us take the polynomial factor P; (which has the maxi-
mum multiplicity »,) and in it the homogeneous polynomial
with the highest degree H,. Now H, factors into linear fac-
tors and of these we choose the one with the highest multi-
plicity, let us denote it by L, = aX + bT. If this monomial
has other factors differing from L, we take the one with next
highest poweras L, = ¢X + dT.If H, isjust a power of L, we
check the leading monomial of P, (which has the next high-
est multiplicity ), and so on. If all the H,’s are powers of L,
we continue with the next to leading monomials, etc. until
another linear factor is found, or P = P(L,) and the system
is one dimensional. If two factors are found we make the
transformation to new coordinates defined by

Xnew ZLD 2"new :Lz . (40)

This choice of coordinates will greatly simplify the classifica-
tion process. It still leaves the possibility of scaling 7, which
will be used later.

As the previous discussion shows we must in the various
steps of the classification process keep account of the multi-
plicities of the original polynomial. To keep track of this we
will use square brackets to indicate the original grouping of
polynomials given in (36). We write

P, =I,I [H.]" VP, :--I:HH,.] ,

and similarly for P,, and v/ P,,. Note that we mean [/ P],,
which respects the previous factorization, and not V'[P, ].

(41)
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One essential component in the bilinear treatment of the
present case is that P(X,T) is an even polynomial without a
constant term (22). We assume here that when the invar-
iance under X— — X, T— — T is applied to the factorized
form (36) it implies a fixed parity for all factors, i.e., that
P(—~X,~T)= + P,(X,T) for each i.

B. Reduction from P to a homogeneous to a monomial
problem

In the condition for S{P,3] (39) itis of course necessary
that it holds for the highest-order homogeneous part by it-
self. This is clear from the equation, where the highest degree
terms can be isolated, but it holds equally well using rewrite
rules: we just replace [v'P],(X,,T;) everywhere in
S [Py,3] by the  expression [vP],(X,T)

We take one more step: If the homogeneous part is to
vanish we must assume that the highest degree (in X,’s)
monomial part in the equation vanishes by itself. In terms of
rewrite rules this means that S [P,,,3] should vanish after
substituting zero for each occurrence of {v'P],,,.

The first step in the classification is, therefore, to discuss
the monomials for which the three-soliton condition is satis-
fied for various relevant [v/P],,.

C. Monomials

To start we observe that monomials in one variable al-
ways pass the three-soliton test. We may assume that after

Monomials in two variables are discussed in detail in
Appendix A. To summarize the results we introduce the

auxiliary function & by
pulk) =[(k+2)/4] + [(k + 3)/4], (42)

where the square brackets denote the integer part. The re-
sults can now be stated as follows: Let

P,=X¥T* [vP],=X*T*,
M+ N even, M>K>0, N>L>0.

Necessary conditions for P,, to pass the three-soliton test are
the following.

(HIfMisoddand K = 1, then L{u(N — 1) + 3, orif
L=1,then K<u(M —1) 4+ 3.

(2) If M is even and N=L =2, then K<2, or if
M=K=2, then L2.

(3) In all other cases K<u (M) and Lu(N).
In Appendix A these conditions were shown to be necessary,
but they also appear to be sufficient. To be sure we checked
them for N + M< 12 by computer.

With these results we can start to construct Tables I-I11.
In the first column we give the type of the polynomial,
(M,N}. According to the choice of X and T'in Sec. IV A the
variable with highest multiplicity is X. Usually we have also
M5 N, and if M < N we give the type as (N,M) and remind of
this reversal by a letter R in the first column.

For the second column in the tables we consider the
products

the possible change of coordinates described in Sec. IV A we II [(x"7*]™, (43)
have P,, = X™ and [vP],, =X%, where M>K. The de- L
gree of S[X™3] is 4M and so in each monomial in  for which _
S [X ™3] at least one of the three X,’s will have a degree
greater than M, therefore in each term a factor of X X can be Z rin; = M, 2,: =K, Zi:s" m=N Z si=L,
extracted for some / and thus expansion (39) is valid. (44)
TABLE L The classification steps for polynomials of degree 4.
Possible Accepted Accepted
Leading homogeneous homog. Possible final
Type monomial generalization generalization generalizations result Comments
‘ (4.0)
(xy [xy* [x1* 1 dim
(X1’ [X?] PP & [XPPx2—1] [X)*[x*—1] 1 dim
(X (X4 [X*+aX?+bXT+cT?] [X*+aX?+bXT+cT?] (IA)
(3.1
X1’ [XP[T] (XPIT] o(3,1)
[XP[XT] XP(X +aDT] [XP[XT] [XP{XT +1] [XPIXT +1] see below
Xl +Nn [XPI(X+ DT+ Ry} XX+ D711 o(2,1,1)
[xX°71] XT(X?+ -] [AT(X? 4+ --9)] [XT(X?4+ )+ R,] [XT(X*+aXT+ TYH)] o(LLLY)
[X?T+aX?+ bXT + cT?] (IB)
[XT(X*+vV3XT+TYH
+aX? 4 bXT 4 cT?] (1C)
(2.2)
[XT}? [xry {xry? 0(2,2)
[X1P(T%) (X1 (T?] (XT3 -1]
(X713 X272 [X?*T?+ R,]
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TABLE II. The classification steps for polynomials of degree 6.

Possible Accepted Accepted
Leading homogeneous homog. Possible final
Type monomial generalization generalization generalizations result Comments
(6.0)
[x1° [x1° [x1¢ 0(6)
[X1*[X2] (X1*[X?] [(X1°[X%—1] (X1*[X* —1] 1 dim
[X1°[Xx°] [(X1°[x°) [(X1P[X°+R,]
[X1’(x4 (X1’x (XP[X*+ R, + Ryl [XP[X*+aX?+1] 1 dim
[XS]Z [XZ]E [X3+R1]2
[X°] (x4 [X®+R,+R,] [X®+aX* 4+ XT] (ID1)
[X®+5X3*T—5T? (ID2)
+aX? + bXT]
(5.1)
[XP[T] (X]°[T] (X3°[7] o(5,1)
[X1'[XT] XX +a)T] (X1 [x7] [XP[XT + 1]
(XI'X + DT XIMX+ DT +a] XI*1(X + DT] o(4,1.)
[X?PIXT] (XX +aDT] X X7 {X?—1y°[x7) (X2 —177[x7] PZLD)
XX+ DT (X 1P[(X+ DT
[X1’1X*T] X7+ -1 [XPX°T] [XVIX’T+R,] [XP(x*— 1T p(E3D)
[XPIXTX + D] [XP[XT(X+T) +R,]
[X)2[X?T] [(XP[(X>+ )T [(X1°[X°T] [XP[X’T + R, + R,]
(X°T] [(X*+--)XT] (X°T] [X°T+ R, +R,]
(4.2)
(X7 [y xrry 0(4,2)
[X1[T?] [XV*[7?] [X11*—1]
[X27}? [XT(X +aT)}? [x?1]? [X’T+R,1?
(X1’[T1*(X] [XP[TI?[X +aT] (XP[T1?[X]
[(XP[T*[X + T) (XPITT[X + T) [XPIT[X + T) 0(3,2,1)
(X1 (X717 [XP(X+aT?] (XPP[XT?] [XT’[XT*+R,]
(3.3
[x71° [x77° [x7)? 0(3,3)
[XPP[T%] [XP[T?] [XPIT?+R,] [XPT? - 1T p(L1L3)
[XT1*[XT} [XT1H{X 4+ a)T} [XTYV[XT] [XTPXT + 1]

[XT + 11°[XT]

with M, K, N, and L satisfying the conditions (1)-(3)
above.

1t is not necessary, however, to take all of the mono-
mials, for some of them cannot possibly lead to an acceptable
final result. This is mainly because they will eventually con-
flict with the definition of 1/ P, the choice of the coordinates,

TABLE III The classification steps for polynomials of degree 8.

or the condition P(0,0) = 0. The following additional condi-

tions are easily shown to be necessary.

(1) Let kbesuch thats, = Oforalli/ < k. Then there can

be at most one j <k for which 7, = 1.
(2) If 5,0 then r,>s,.
(3) At least one 7, or s; must be #2.

Possible Accepted Accepted
Leading homogeneous homog. Possible final Com-
Type  monomial generalization generalization generalizations result ments
(8.0)
[X]* [(X1* [x]® 0(8)
(X)X’ (X1’ [X?— 13 [X]? (X?—11[X]° 1 dim
(xpxe)® [Xp*x)? (X1°[x2— 1) [X1*[x2—-1]° 1 dim
{x4° [x'p (X4 + R,
[x)°[x?] [X]°(x7] (XX —1 [X1°1x* —1] 1 dim
XX [X°1*x7] [X°+ R, PIX*—1]
[XP1x°] [X1°1x?) [XPPLX*+R,]
[X1*[X7] [X]1Xx*] [(X1*[X* + R, + Ry] [X1[X* +aX? + 1] 1 dim
(X?)°[X*] (X3P (X 4] [X?—1]*[X? + R,]
[X1°[x*] (X1[x°] [(X1°[X®+ Ry +R,]
[X)PP[X4] [X1’[x°] [XIP[ X+ R, + R, + Ryl [XP[X®+2aX*+a2X2+1] 1dim
[(X*] [x®] [X®+ R+ Ry + R;]
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TABLE I11. (Continued.)

: o R
‘ Possible Accepted Accepted
Leading homogeneous homog. Possible final Com-
Type  monomial generalization generalization generalizations result ments
(1.1
(x)’[1) [XV[T] . (x17[7 o(7,1)
(XX 23 T] (XX 22 T] [XP{x% - 1]2[T] (XPlx?-11*[1) P(23,1)
(x1°(xT) [X1°[(X +aDT] [X1°0XT] [XI°[XT + 1]
[X1°[(X+ DT [XI°[(X + DT+ R,] (X1%{(x + )T 0(6,1,1)
(X*1P[XT] (X21[(X +aT)T] [X2)(XT] (X2 —11°[XT) [X?—1]°[XT] p(31L1)
XX+ DT [(X* 1P [(X+1T]
[X°1*[xT) [(X*Pl(X+aDT] [X31*[xT] (X34 R PIXT + R,]
XPLx7] [XPIXT(X + aD)] [X1*1X°T1] [X1P[X?T + R,] XPrix?-nn p(L5,1)
XPXT(X + D] (XPXT(X+ T) +R,]
[xXpxery (XPXT(X?+ )] [X1*[x°T] [X]*[XT + R, + R,]
X3P X°T] [(XPIXT(X?+ )] X232 X°T] [X2 —1]3[X°T+R,]
[XPLXT) XPLXrxs + -] [XP1XT] [XPIX*T+ R, +R,]
[X1*{x°T] [XPXT(X*+ )] [X1*[x°T) [XPLX*T+ R, + R, + Ry,)
[x71) [XT(X®+ -] [x77] [X'T+ R+ R, + R,]
(6.2)
[x)°[7)? [x1°[17? [x16[11? 0(6,2)
(X157 [X18[T?] {X1°[7% —1]
[X2P[(1)? (x**[1)? [X2-1P[11?
(X} [XTP (XX +aDTT (X1 1x7)? XPXT+ 1]
[x°ry? [XT(X? + -} [xsr)? [X°T+R,)?
XPIrPixl [XPITPLX + aT] XPITPLX]
[XPITPIXY+ 7] XPITPIX+ T 0(5,2,1)
[(XPXT?] [XPI(X +aDT?] [X1°1X7?] [XPIXT? +R,]
XPIXTIX] (XPUX +aDTP{X+0T] [XPLIXT]?[X]
[X1*[T1*[X?] [XTPR(X2 4 -] [X14{T1?[X?] (X1*{T)*[X? - 1]
(X’T*[X?]  [XT(X +aD)P[X*+ -] [X?>T1’[X?] [X*T+ R, [X? 1]
(XPT[X°] [XPITIPX% 4 -] [XPP[T1[X°] [(XPITP[X? + R,]
(5.3)
Xy (xpPre Xy 0(5,3)
[X1°[T°) XPIr [XPIT?+R,} XP(T(T* - 1)] p(LL5)
[XTP[XP? [XTP[X +aT]? [Xrixy? XT+11°[x]?
[XTP[X+ TT? [XTPLY + T7? 0(3,3,2)
[XPIXTPT] [XPHX +eaDTPR(T] [XPLXTI*[T] [XPIXT+112[7]
X111 X] [X1{TPX + aT] [XPTPX]
(X1 [TPP[X + T (XPITPX + T 0(4,3,1)
(XT1*[T][XT] [XI*ITIP[(X + aD)T] [X)*[T1*[XT) (X1 T1HXT + 1)
[X>TIAXT] [XT(X+aDP[(X+bT) [X*T*(XT] [X2T + R, 1*[XT + R,]
(XT1°[X?] [XTP[X?+ -] [XTP[X?] [XT]* X% ~1] [xXTP(x?-1] p(1;3,3)
[XTPPLX(X + 1)) (XT+1P[X(X + )]
[XTPIX(X + T) +1]
XPITPIX?T]  [XPITP(X?+ - )T] [XP[TP[X?T] [XPITPX?T +R,]
R [XPITHAT) (XPIT*P(T) XPIT> - 111 XPIr—1’(n} p(2;1,3)
R [XPITPIT?] [XPITIPIT?) IXPITIPIT? +R,]
R XPI7°%] [XPIT%] [XP{T°+R;+R,]
44)
{x13* [x7}* [x17* o(4,4)
[X]G[TZ]Z [X]4[T2]2 [X]4[T2__ 1]2 e
[X2T2]2 [XZTZ]Z [Xsz +R2]2
[X1P{T**[x] (XPIT*P[X +aT] (X1P(T*1%(X]
(XPIT?)*[X + T] [XP[T?— 1P X+ T]
[XT)*[XT] [XT]*[(X +aT)T) (XT1*[XT] [XT+1)°[xT]
[XTP{XT +1]
[XTP(X + DT} [(XT+1P[(X + N T)
(XTP(X+ )T+ 1]
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The second column in Tables I-IIT can now be con-
structed.

D. Homogeneous polynomials

The next step is to reconstruct the most general homo-
geneous potential from the given monomials. Recalling
again how the coordinate 7" was chosen we get certain re-
strictions in the possible generalizations, as above.

(4) Assume that & is defined as in (1) above, then each
power of X forj < kK must stay monomial.

(5) If 5, #0 then s, powers of X must stay monomial.
With these rules we can write column 3 on Tables I-III. If no
homogeneous generalizations were possible column 3 was
left empty and the result of column 2 transferred directly to
column 4.

All polynomials in column 3 were tested by computer
whether they fulfilled 3SC. The positive results are given in
column 4, We observe that arbitrary homogeneous polyno-
mials of degree 4 are allowed, but for degree > 4 one can only
have a factor (X + aT') in addition to the X and T factors we
started with. In column 4 we have then used the freedom to
scale 7' to a = 1 or 0, and split the case into two subcases.

E. Final results in two dimensions

In column 5 we have written the most general nonhomo-
geneous polynomial as extended from the homogeneous
polynomial in column 4, subject to the usual conditions that
the generalization must be even, have no constant term, and
will not conflict with the definition of v/ P. (For those cases
that are eliminated by the last condition or which do not pass
the 3SC we use three dots in the subsequent columns.) The
notation R, refers to an arbitrary homogeneous polynomial
of degree /.

In column 6 we have as the result all those polynomials
that pass the three-soliton test. The results can be divided
into the following groups: (I) models with truly nonlinear
dispersion manifold; and (II) models whose two-dimension-
al dispersion manifold consists of lines.

(IA)X*+ aX?+ bXT + cT? Thisisacombination of
KdV and Boussinesq equations, for we have not yet used the
freedom of choosing a new 7 variable. If ¢ =0 we take
T,ew =aX + bT and get KdV (4), while in the opposite
case we first of all scale 7 so that ¢ = — 1, then take
T, = T+1bX, and finally scale X to obtain (9).

(IB) X3T + aX?+ bXT + c¢T? This is a generaliza-
tion of the shallow water wave equation (13), which is ob-
tained after scaling for a = 0. It is included as a special case
(d = 0) in Ito’s equation (29). The case b = ¢ = 0 appears
as a separate item in the table because it has a different radi-
cal ideal.

(IC) XT(X*+V3XT+T?) +aX? 4 bXT + cT>
This is a new result. It is symmetric in X and T, a property
not shared by any other nonhomogeneous bilinear equation
of type (6). The leading polynomial can be transformed to
many other forms, e.g., X* + 6X 272 — 3T*, but we prefer
the canonical form. The leading fourth-order polynomial
has an interesting property: If one chooses two factors from
an arbitrary fourth-order homogeneous polynomial in X and
T and redefines them as X and T then the remaining quadrat-
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ic part of the polynomial will usually depend on the particu-
lar factors chosen. However, the above polynomial is one of
the two, for which such redefinitions have no effect. Perhaps
this high degree of symmetry is essential for a leading part
that is not a mere power.

(ID1) X® + aX* + XT. This is a generalization of the
Sawada—Kotera equation (11) which is obtained for a = 0.

(ID2)X%+5X3T 4+ aX?+ bXT — 5T Thisisagen-
eralization of Ramani’s equation (19), which is obtained for
a = b = 0 after scaling. Note the interesting feature that co-
efficients of different degree terms are related.

(IT A) Several one-dimensional polynomials pass 3SC.
At lower degrees the polynomial can be completely arbi-
trary, but at higher degrees we get conditions on the coeffi-
cients. Conditions are first obtained at degree 8: We find that
the general polynomial [X]?[X ® + aX* + bX? + 1] passes
the three-soliton test only if b = a*/4. This one case is not yet
enough to determine the pattern and we will return to this
subject in a later publication. One-dimensional bilinear
equations are perhaps not relevant from the point of view of
NEE’s, but they should not be ignored because they may tell
us something about the structure.

(IIB) p(NV;M,P) =[X?—1]"XMT* At least for
2N + M + P <9 thisis acceptable if M and P are odd, which
we conjecture to be sufficient for arbitrary degree.

(II C1) o(M,N) = X ™T*. This is acceptable for any M
and N.

(I C2)o(M,N,P) = XMT™(X + T".
whenever two of the indices M, N, P are odd.

(IID) o(1,1,1,1) = XT(X + aT) (X + bT).

The notation 0(M,N,...) is used above when the disper-
sion manifold consists of lines going through the origin,
while for p(N;M,P) it consists of three parallel lines and a
fourth line intersecting them.

This works

F. Extensions to higher dimensions

Let us finally discuss how some of the above results can
be extended to higher dimensions. Our main tool in doing
this is the observation that any higher-dimensional model
must still pass the three-soliton test when it is projected to
lower dimensions, i.e., if P(D,,D,,D,) is acceptable then so
isP(D,,D,,aD, + bD,) for any a and b. (This is because the
condition is more stringent when the variable ¥ must be kept
separate from the others.) This observation implies that we
need only consider those models in the table that have
enough arbitrariness.

(I A) In principle we should now test X* 4 aX?

+bXT + ¢T?+dXY + eTY + fY?, but the freedom of
redefining the 7 and Y coordinates can be used to simplify
the situation.

(1) Let us first assume that /70, and scale Y so that
S = 1. By the transformation Y— ¥ + aX + BT we can put
d=e=0.If b =c=0, we get back to a two-dimensional
model. If ¢ =0, b #0 we redefine 7T and scale so that the
quadratic part has the conventional KP form — 4XT
+ 3Y?2, which passes the test. If ¢#0 we scale T so that
¢= — 1 and translate the quadratic part to — T2 4 aX?
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+ Y2 This, however, does not pass the three-soliton test.

(2) If f=0 we may by T<Y reflection assume that
¢ =0 as well. Then redefining T we get either X* + X2

+ Y(dX +eT)or X* + XT + Y(dX + eT). They pass the
test only for e = 0, which in each case can be reduced to two
dimensions.

Since Y2 was an accepted additional term we may ask
next if an extension to four dimensions is possible. Using the
same technique as above for reductions Z = aX + 8T 4 yY
one can shew that the possible additional terms can either be
absorbed or lead to one of the nonallowed extensions of the
previous paragraph.

(I B) For this model we do not have the freedom to
redefine T as in the previous case. First we checked the Y2
extension and found that is not acceptable. For
aX? 4 bXT 4 cT? + dXY + eTY we found the condition
d = 0. We may then assume that ¢ = 1 and redefine ¥'so that
b=c=0. Any higher-dimensional generalization must
then also be of type XZ which can be eliminated by redefin-
ing Y. Thus our final result is X *T 4+ aX 2 + T'Y. The addi-
tional aX 2 term was included in Ref. 21, but it is still open
whether it can be obtained from some hierarchy by reduc-
tion methods of Refs. 13, 15, and 16. In any case if the final
result is to be weighted homogeneous both 7 and X cannot
have positive weight.

(I C) This model does not allow extensions to higher
dimensions.

(ID) For (ID1) any extension would lead also to a
generalization of the original two-dimensional model and
are therefore excluded. For (I D2) one needs to consider
only the additional term YX and it is found to be acceptable.
Then we can redefine ¥ so that the model is finally
X6+ 5X3T — 5T? + XY. It is the first equation of the BKP
hierarchy,!®> and combines (ID1) and (ID2): with
Y-aX + bT we obtain (I D2) while T-X, YT yields
(ID1).

(I A), (II B), and (II C1) do not allow generaliza-
tions to higher dimensions.

(II C2) In Appendix B we have derived for the three-
dimensional extension of o(M,N,P) = X ¥T VY ? the neces-
sary condition that two of the indices M, N, and P must be
odd. Since here K=L = Q=1 it is also sufficient. This
agrees with the above two-dimensional discussion, and com-
bines (II C1) and (II C2).

(II D) The only model with enough arbitrariness to be a
candidate for a four-dimensional model is o(1,1,1,1). In-
deed, we find that P = XTYZ passes the three-soliton test.

V. CONCLUSIONS

The full results are summarized in Table IV. We note
that all the models of the first type with the exception of
(I C) have been known previously. They can be obtained
from certain KP hierarchies following the ideas of Ref, 13
[the aX 2 term in (I B) is still open]. Many other special
cases can be obtained from these by projection or reduction.

The polynomial (I C) is a new result and interesting in
its symmetrical treatment of the X and T variables. It seems
unlikely that it can be obtained from the known hierarchies,

1740 J. Math. Phys., Vol. 28, No. 8, August 1987

TABLE IV. Summary of the results of the search. The first group of models
are truly nonlinear, (I C) being a new result. The second group of models
have a linear dispersion manifold. These apparently infinite sequences are
also new results.

(TIA) X4 —4XT+3Y?

(IB) X3T4aX*4+TY

(1C) XT(X%2+V3XT+T*) +aX?+ bXT 4+ cT?
(ID) XS4+ 5X3T—5T24+ XY

(ILA)  One-dimensional models, including X 2[X2(X? + a)? + 1]
(II B) [X2— 11YXMT7, if M and Pare odd
(IIC)  XMTNY?,if two exponents are odd

(I1D) XT1YZ

because of its novel leading part. It is still open whether or
not it is completely integrable, but in any case it passes the
three-soliton test.

The remaining models are special by having linear dis-
persion manifolds. Their complete integrability is not
known, and it is not clear whether they can be obtained from
the known hierarchies, or whether a new treatment is need-
ed. It is also important to note that we obtained infinite se-
quences of models. As opposed to the hierarchies known be-
fore, which might be labeled “‘vertical” hierarchies, we have
here “horizontal” hierarchies. An interesting question is
whether vertical hierarchies can be built on top of them.

In this work we have assumed that the bilinear equation
is of the type (6). Searches like this will be conducted for
other types of equations in the future.
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APPENDIX A: MONOMIALS IN TWO VARIABLES'

Here we will derive the necessary conditions for mono-
mials in two variables to pass the three-soliton test. In gen-
eral we have P, = XMT%, [ P],, =X*TL, M + N even,
M>K, N>L, and the three-soliton condition reads as fol-
lows: S[XMT¥"3] must vanish when the rewrite rule
X XTL_0is used. Here the constants K and L are carryovers
from the initial factorization, since v/ (X ¥T™) = XT if M,
N>0. Let us introduce the notation

X, = (XX, - X,.X*)o,0, (Al)

and similarly for T;. Then S [X “T*,3] can be conveniently
written as

S[XMT%3]

= z [Xp2 + Xos + X5y 1Y [Ty + Tps + T3, 1Y . (A2)

Jarmo Hietarinta 1740



Since the rewrite rule does not connect different mono-
mials obtained after (A2) is expanded, they must all vanish
independently. We will now consider some specially chosen
groups of terms and in this way derive necessary conditions
for K and L. The discussion will be divided into several sub-
cases. Since X and T appear on the same footing the results
obtained for M and K have their obvious analogs for ¥ and
L.

(a) N, M even. Let us consider the group of terms with
the maximum power 3N of X; and no 77, It is given by

ZX33M(01X1—02X2)M(T13T2— T, TH)Y. (A3)
In this expression the powers of 7', and 7', are higher than X,
so all terms that have sufficiently high powers of X; or X, will
vanish. Let us therefore take the terms where these appear
with minimum powers.

(al) M = 4m, m > 0. The middle term in the expansion
of (o0 X,—0,X,)” yields a term proportional to
XPM(X\X,)2™(T T, — T, T,*)" and this vanishes only if
K<2m.

(a2) M = 4m + 2. Now the middle terms will have a
0,0, factor so it will vanish in the o summation. Let us there-
fore consider the next to middle terms, which provide the
factor X" *2X,7" + X,*"X,>" *2 These terms vanish
when K<2m + 2.

bYN,Modd,L=1orK=1.Letustake L =1, and
consider the coefficient of T,". The group of terms with a
factor X;*™ vanishes in the o summation, so consider instead
those terms with the highest even power X;** ~ 1 given by

2X33(M~ ”(U]Xl _ UZXZ)M71

XXX, — X, X (T 2T, — T\T,})". (A4)

(b1) If M = 4m + 1 the middle term in the expansion of
the M — 1 power contributes a term proportional to
— (X,X,)*", and when this is combined with other terms we
find that they do not vanish unless K<2m -+ 3, which is our
result in the present case. Note that for m = 0 and 1 this
condition is trivial.

(b2) If M = 4m + 3, the middle term vanishes by the o
summation so we consider instead the next to middle pair
(X, 2X,2m 4 XX, + 2), When this is combined with
others it implies that we must have K<2m + 5. For m =0
and 1 this condition is again trivial.

(c)M=K=2,or N=L =2Take N=L = 2. Inthis
case we can choose from the 7" terms those with one factor of
T, and T, and for X maximum odd power of X;. The group
of terms characterized this way is

. ZX33(MM 1)(0'1X1 . O,ZXZ)M~1

X (XX, — X, X)) T 0, T, T, . (AS)
Next we take the monomial with maximum odd power in X,
it is given by —Z2 XM Ve X XM —-X X7
X T°a,T,T;. This can vanish only if the rewrite rule is ap-
plied to index 1, and then we can read off the rather strong
condition K'<2.
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(d) M, Nodd, K, L > 1. Now we take the group of terms
with maximum power of X; and one power of 7. They are
given by

ZX33M(01X1 — 0 X)M(TPT, — T\ TN !

XT3(0 T — 0, T.%) . (A6)

The two middle terms in the M power survive when com-
bined with suitable 7, terms and the conditions in (b) can be
improved:

(dYM=4m+ 1, K2m+ 1,

(d2YM=4m + 3, K<2m+2.

APPENDIX B: MONOMIALS IN THREE VARIABLES

We will now derive the conditions for three-dimensional
monomials. Using previous notation we must find out when

S{XMTyY*3]
:E [X|2+X23 +X31]M[T12+ T23+ T31]N

X[Y12+Y23+Y31]P (Bl)

vanishes under the rewrite rule XXTt¥Y9-0. Here
M+ N + Piseven, K, L, 0>0, and X, etc., defined as in
(A1). Let us consider the “cyclic” terms with different pairs
of indices, say

S XML P (B2)
When this is expanded it consists of monomials from which
no factors can be extracted containing at least X, 7Y, for
some i. Thus it cannot vanish due to a rewrite rule, but only
due to the o summation. The o,’s can be extracted from (B2)
and the sum produces a factor

EOIM 4 POZM+ NO'3N+ P

=1+ (=DY1+(=D")1+(-DF), (B3
from which we conclude that the numbers M, N, and P can-
not all be even. In the following assume N and M are odd.

Let us next consider

ZszMT12T23NV1Y31P- (B4)
Here each ¢ appears with even power so the summation can
be ignored, and thus (B4) vanishes only after the rewrite
rule. Since only index 1 appearsin all three variables, and Ty,
contains 7, as a single power, we conclude that L = 1, and
analogously with a specific X,, factor that K = 1. To get a
condition for Q we consider X,,"Y,7,,"Y,,Y;,* =2 . It can
only vanish when a rewrite rule in index 2 is applied and
since Y, appears in one term of the product Y,,Y,; with
power 2 we conclude that @<2. If P = 2 this condition can
be improved by considering X;,7T,,"Y,;Y,;. The rewrite
rule can now be applied to indices 1 and 2, and only to these,
but both have terms where Y, or Y, appear singly, therefore
© = 1 in this case.

It turns out that in practice we only need Q = 1. In that
case the above condition is sufficient as well: In the expan-

Jarmo Hietarinta 1741



sion of (B1) we have either terms of type (B2), which vanish
due to symmetry, or terms where some index appears in all
variables, which vanish by the rewrite rule.
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Spinor focus wave modes
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New solutions of the homogeneous spinor wave equation are obtained. They are similar to the
focus wave mode solutions of Maxwell’s equations leading to a Gaussian pulse energy. A
weighted superposition of these modes may supply finite energy pulses. The particular case of

Bessel weight functions is discussed.

. FUNDAMENTAL MODES

We use Brittingham’s procedure' for producing nondis-
persive, packetlike solutions of the spinor wave equation.

Using cylindrical coordinates 7, ¢, z, and the representa-
tion of the Pauli matrices,

o = 0 e % . 0 —ie ™
S L ¢ I O P71 0 ’
) 0 (1)
Uz:?o —1" i=V-1,
the spinor equation takes the form
0.+ (VBN +e™ 10, — (/3 =0,

e, + (i/1d, 1 — (8, — (1/6)d, )14, = 0.

Hered,,d,, d,, and d, are the derivatives with respect tor, ¢,
z, and time, respectively, c¢ is the velocity of light, #,, ¥, the
two components of the spinor field.

Introducing the variables £ = z — ct, & = z + ct we get

20: ¢, +e= %, — (i/r)d, 1, =0,

698, + (i/P)3, Wy — 2y = 0. 2)
It is easy to check that Egs. (2') have the solutions

= (7 e,

Y= — (Af/r+ et T e @)
with

u= —((r¥/f) +AE), f=p+£E/4, (3)

where A,u,v are arbitrary constants.
To obtain a physical interpretation of these solutions we
impose the following conditions on A,u,v:

v=—-n—1, n=m/2, m= —1,01.2,.,
A=ik, uw=a’k, ak>0,

where g,k are real constants. Thus we get from (3), (3'), and
(4),

IS kr?
b= exp( - , )
(@ —iEH)"+ a—i&
xexp[ — (k€ + (n + )],
— i ( kr? )
=——e¢exp| —
ST G
xexpl — i(kE + n@)].
This gives three-dimensional nondispersive packetlike solu-

(4)

(5
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tions propagating at light velocity along 0z. Three dimen-
sional means that amplitude falls off in any direction from
the moving pulse center both longitudinally and transversal-
ly. Nondispersive means that the pulse envelope shapes re-
main unchanged along propagation. We conjecture that
such solutions of linear partial differential equations exist
only in three-dimensional spaces.

Now according to (1) and (5), the components of the
current density vector are

= PPt 4 e~ Pyt

g 2akr?
-T2 2oz P —— 2/
(a*+£&%) a4+ &
Jo = e*Y, Y — ie Yt 6)
_ 2t exp(— 2akr? )
(az+§z)n+2 az+§2 '
jz:‘d/1|2—“/}2|2
_rrt—£—dd) ex (_ 2akr? )
(a2+§2)n+2 az+§2

where the asterisk denotes the complex conjugation. The
energy density Wis

an(r2+§2+a2)

W:t¢112+1¢212= (02+§2)n+2
2
><exp(— a?;a«fr§2)’ (7

W represents a modulated Gaussian energy pulse. Then the
total energy ¥ in a packetlike solution is

) +
E=27rf f Wrdrdg. (8)
0 — o

It is easy to check that E is infinite. To cure this trouble one
may think of a cutoff at the lower and upper bounds of the
integration in (8). This means that the spinor field is identi-
cally zero except when &, < £ < &,, where the solution (5) is
still valid. But this new solution must satisfy the boundary
conditions across the surfaces of discontinuities propagating
at light velocity along the z axis. These conditions were pre-
viously formulated® as

(07 8,F + (1/¢)3,F)¥ =0, 9)

where F == ( defines the surface of discontinuity. One sees
easily that (5) cannot satisfy (9). Wu and King® reached
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similar conclusions for Maxwell’s equations (for a more gen-
eral result see Ref. 4).

1I. MODES WITH FINITE ENERGY

As already noticed by Ziolkowski,’ it is not a drawback
per se that the solutions (5) have infinite energy. Plane wave
solutions also share this property. Nevertheless to appease
some critics we show how to construct finite energy solu-
tions.

We first write the solutions (5) in the form

—ke fiu
e ()
. =1u e \1 (10)
with
u=re~%/(a—if), p=ik+ri/(a—if), (10

and according to Ziolkowski’s suggestion,” we introduce the
Laplace-like transform

G(p) =J F(k)e~** dk, (11)
0
where F(k) is a suitable weight function.
Then we get the new solutions
u iu
P, = G ( ) 12
T ®» 1 (12)

and we have to look for the conditions that F(k) must satisfy
to obtain finite energy solutions.
Remark: The inverse transform is

+ o« + r
FOO =f dgf dgf rdrK(kp)G(p)  (13)
- — o 0
with

K(kp) = [77%%/(a* + £2)exp — (£ /2ka)?]e " .
(13"

This results from the following relation, which is easy to
prove:

+ @ oo “+ oo _
f ng- rdrf dée *?PK(kp)y =6k —k"),
— ™ 0 — o
(14)
where 6(k — k') is the Dirac distribution. If ®! denotes the

Hermitian conjugate spinor, the energy density W, for the
modes (12) is

W, =00,
= (uu*)"(1 + uu*)G(p)G *(p)

=[r"@+E>+r2)/ (@ + £ G(P)G*(p).
(15a)

Using the last result together with (11) the total energy E,,,

+ oo 0 27
E, =f ng' rdrf o' ®, do,
— o 0 0

becomes, after integration on g,

T dg ® 2n+1¢ .2 2 2
En =21Tf Wf r=** (a +§ +r*)dr
— o 0

xr r FUOF*(k")
0 0
Xexp[ — (kp + k'p*)1dk dk’
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and changing the order of integrations

E, = 21rfw Jm dkdk' F(k)F*(k')
(] 0

xexplitk’ —k)E ] f+ T dF
— w ((12+§2)"+2
XJ. r2n+l(a2+§2+r2)
(1]
k k'
Xex —r2( + )] dr. 15b
P[ i atif (15)
From now on, we assume that » is positive integer or half-
integer (that is, we discard the solutions with n = — } and

n=0). Then the last integral in the right-hand side of

(15b), using the variable u = r 2, may be expressed in terms

of gamma functions:
1

2(02 +€2)n+2

-y

4,(6)= r W@+ £7 4 u?)
(¢]

a—lfié‘ + ai’ig‘)] du

_ 1 T'n+1)
_7((a(k+k') FiE(k—k) T
F(n+2) )
(@lk + k') +iE(k— k) +2/)"

Substituting this last result into (15b) gives

(16)

E, = ”r fw dk dk ' expli(k — k")E 1F(k)F*(k')
0 0

+ o
x j dE A, (£). (17)

In the Appendix we prove that for m > 1 integer or half-
integer, x,y real, one has

+ o dx
. S TP% )
f—w (1 +xp)™ &

_ 2/(m—1),
I _[4/(m—1),

m integer,

m half-integer,
(18)

where 8(x) is the Dirac distribution. Since # is positive this

gives

J' T L'(n+1)dé

—w (@(k+k") +iE(k—k))*!

=1Tf,.+11“(n+1)6( k—k’ )
altk+k")/

(Zak)n+l
r 1
a5 gy
(2ak)"
using this last result together with (16) and (17), we get
g :
E,=——fo T(n+1)
oot T
* dk n
9k pikyFe(k (1 —) 19
Xok"()()+2ak (19a)
so the energy E, is finite if the integrals 7,,,
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(19b)

T, = % Fup,
o k™

are bounded for m = n and m = n + 1. To satisfy (18) we

must assume 7 > 1, which discards the possibilities n = 1,

n=1.

IIl. MODES WITH FINITE ENERGY AND BESSEL
WEIGHT FUNCTIONS

We illustrate the previous theory by choosing Bessel
weight functions

F,.(kb) =J, (kb)k* 1, (20)
where J, is the Bessel function of the first kind and vth order,
b is a positive scalar, and p,v are positive real numbers (u
may be zero).

Then the relation (11) becomes

.. (2) =F e, (kb)k "~ dk. (1)
0

b
This integral exists for z + v> 0 and Re(p + ib) > 0. Both
conditions are fulfilled according to the previous require-
ments. Then®

G, (L) L6/ (1 b )1/2_”-——”" +v)

b P P’ C(v+1)
—u+1 v—pu b?
X F (V # y +1)V l;__ )
2L 2 2 + I’
(22)

where ,F, is the hypergeometric function.
Now we have to check the boundedness of the integrals
(19b) which become

Ty =f 4k 2 (k.
0

km+2—2;t

(23)

They exist for 2v + 1>m + 2 — 2u>0. Since one has
m=n,n+ 1, n>1 this leads to the conditions

p<n/2+1<v+pu, n>l (239

Substituting (21) into (12) gives the solutions &, ,,, which
depend on two arbitrary positive lengths a,b and three
numbers 7 > 1 integer or half-integer. Then >0, v> 0 are
compelled to satisfy the two inequalities (23’).

The energy density (15a) becomes

W _r2n(02+§2+r2)
npy (02+§2)n+1

(24)

2
(3

To obtain a clear picture of the energy pulse (24) is not so
easy as for the Gaussian mode (7). We shall only discuss its
form for ¢ = 0 or z = 0 and for the set of the lowest integer
numbers n,u,v, satisfying (23"). To simplify we also assume
a=h.

For 4 =0 and u =1, (22) becomes a very simple
expression®:

av 1

L) (25a)

6o (2) =2 — 1.
*\a v (p+p7+a%)”

G, (5) -z L : (25b)
a PP+ at (p+p+a’)”

soforn=2, u=0,v=3andn=2, u=1 v=2 we get
from (24), (25a), and (25b)

1 A@+£2+r?)
W03 =ga—6 (@ f§2)3 Wp* +a> —pl° (26a)
W =ir4(02+§2+r2) |p[ 2_+_af_p|4
2,12 at (02+§2)3 |p2+a2|
If |p|*> a” the last expressions become

(26b)

PR Er? a*
Wiyos = 576 @+ p° l+0(p~—4) , (27a)
W PP E 42
2,12 1602 ((12—+—§2)3
ab 2 4
s <1+0(;%)>, (27b)

where O is the Bachmann-Landau symbol for the order of a
quantity. For |p|? <a?, we get

P2 —a? = (r’+22 -1’ —d)(r’+ 22— 1’ + &%) + 4d’zct

a2+§2

which simplifies for t =0 and z = 0.
At t=0 the condition |p|*>a® is fulfilled for
R2=r?+ 2> a* and one has

lpI> = [R*/(a® +2) (1 + O(a*/R ?)). (30)
Substituting (30) into (27) gives
asr & o
W == 0 1 0 (—_ y_) ’ 31
2,03 576R 10 ( + R? p4> (31a)
a‘rt P
212 =T6R—1°<1 +0(F ,}7)>, (31b)
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r4 az+§2+r2 P 6 (pz)
=———— ] — 1+0|=}],
2,03 9 (a2+§2)3 a + a2
(28a)
r4 a2+§2+r2 p 4 (p2>
W,, =———"——— || —— 1+0(~=}).
2,12 a2 (az+§2)3 a + &
(28b)
Now according to (10’) one has
(29)

[
when R0 these expressions decrease to zero as R —'°.

Now for R 2 <a? one has

and from (28) we get
W= 5(1+0(G 2 2). (330
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For r—0 these expressions decrease to zero as #*.

Let us now consider what happens on the sphere
R? = a” which corresponds to |p|> = a®. There, of course,
one must consider the exact expressions (26). Still using
(10’) with the condition R ? = a* a simple calculation gives

Wo¥ + @ —p|* =a* +a(p + p*) — aJp +p* (p +p*),

(34)

with

p+p*=2ar’/(a*+7), (34)

P +p* =287 ¥ 2.
Substituting (34') into (34) gives

WP+ @ —plr=[a/(@+2) a2 -1  (35)
From (24) and (35) we get

Wy = [2a°/9(a® + 2%)°](a\2 — 1)S, (36a)

Wy = [1/(a* + 22)*] (a2 — r)*. (36b)

These results show that the energy density decreases swiftly
to zero far from the sphere R ? = a2 where it is bounded.

For z = 0 one obtains similar conclusions: W, o, = W, ,
=0 when [p|*»a® outside the hyperboloid H;;
r?—c*?—a*=0, and when |p|*>€a? inside the hyperbo-
loid H,; r? — ¢’ ? + a® =0, the energy density being non-
null and bounded on both hyperboloids.

Although limited to ¢ = 0 and z = 0, the picture of the
energy pulse makes clear that it is focused around some hy-
persurface. At least for 4 = 0 and u = 1, it is also clear from
(25a) and (25b), that for n fixed, higher values of v increase
the energy concentration. :

IV. CONCLUSION

" The Laplace-like transform of the fundamental modes
(5) gives a rich class of possible solutions of the spinor wave
equation since the weight function F(k) is somewhat arbi-
trary. In fact the condition that the integrals T, are bounded
is rather mild. We only investigated the case of Bessel weight
functions and we found a quintuple infinity of solutions de-
pending on two real scalars and three positive numbers.

Of course many questions are still unanswered. Are
these solutions only a mathematical curiosity or do they
have a physical support? In this last case what is the role and
the meaning of the weight function? Clearly further investi-
gation is needed to master these issues.

APPENDIX: PROOF OF EQ. (18)
We prove here the relation

+
Fm(x)zf &

——-———f,,,w&(z), i=\ =2,
—w (I+ixy)"

(AD)

for m>1 integer or half-integer and x,y real, 8(x) is the
Dirac distribution, and f,, a constant depending upon m.
We first introduce the functions F,, , (x) with a > 0:

Fm,a(x):j ___4¥____,_.
—a (1 +ixp)™

Then if g is a function with bounded support, we get

(A2)
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(Fpp)= l’..m F, . (x)p(x)dx (A3)

for any interval (a,b) containing the support of ¢. Let
G, . (x) be the functions

G (x) = j F, .(x)dx.

Integrating (A3) by parts and using qo‘(a) = @(b) = Ogives
b

(Fpop)= — 0{19 f @' (x)G,, . (x)dx,

we now assume that the two following conditions are ful-
filled.

(i) G, (x) converges in mean to the Heavside function
H(x):

(A4)

(A3)

Jim G, (x) =f,7H(x), (A6)

that is,

b
lim | G,,(x)dx=f,wb
with zero inside (a,b).
(ii) For x>0, G, , (x) is bounded by f,, 7:
G (X) [,

The two conditions imply

(A7)

(A8)

b
lim | ¢'(x)G,,(x)dx= fmﬂf @ ' (x)H(x)dx,
a a (Ag)

and substituting (A9) into (AS5) gives (F,, ¢ ) =f,.m¢(0),
which is (A1).
Now to prove (A9) we start’ with

b
lim f (G (x) -fmfrH(x))¢'(x)dxl

b
< ub 19| [ (G () — funH (22N,
but using (A6) and (A7) one has

b
lim | |G, ,(x)—f,7H(x)|dx

=1lim | (G,.(x) —f,7H(x))dx =0,

which leads to (A9).
Let us now discuss the condition (A6) starting with
m > 1 integer. From (A2) we get

— 1

F, = i
Ty
X( 1 _ 1 )
(1 + iax)™—1 (1 —iax)™—!
(A10)
and using (A4)
G (%) = f (e
(m-—l) (I-Iax}”'“
dx
—_—— = All
(1 —zax)’”f‘) x ¢ )
but one has
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J‘ dx
x(ax +5b)"
—1 ax+b) ’"_l(m—l) (—a)*x*
- 1 - Sl L
mb (Og( X kgl k k(ax + b)*

so0 (A11) may be written

G (X) =G0, (X) + &, (%), (A12)
with
GO, (x) = [2/(m — 1)](arctan ax + 7/2), (Al3)
=1 m5? (m — 2) x*
gm,a (x) - i(m _ 1) kzl k k
. k . k
><((l—toz) (U +ia) ), (A14)
(1 +iax)* (1 —iax)*

where we used the fact that g, , (x)—0 for x> — «» as
easily seen by writing the term into brackets
[1/(1 + &2xH)*] ((1/x — i — iax — a*x?)*

— (1/x + ia + iax — a®x*)*).

Using the relation

f arctan ax dx = x arctan ax — (1/2a)log(1 + ax?),

(A15)
we get

b
J G . (x)dx = 2

252
— a arctan aa — L log(-l—i-(i)
2a 1 +a%a®

N ((b —a) -7—;- + b arctan ab

which gives, if zero is inside (a,b),

2mb
m—1

b
lim | G, . (x)dx=

ars»ow Jg

(A16)

Let us now consider (A14). One has
b —
-1 m=%1 (m —2)
ma (X)dX = ——— —
fag'( i(m—l)kz’lk k

b . k _k . k. Kk
Xf ((l—ta) x (14+ia) )a’x,
s \ (1 +iax)* (1 —iax)®
but according to the mean theorem there exist x,,x, in (a,b)
such that
b 3 k. k : k. .k
J' ((l—za) x© (1 +ia)x )dx
a \ (1 +iax)* (1 —iax)*
(11— ia)xk (1 4 ia)*xk
(1 + iax,)* (1 — iax,)*
which is zero for a — o so that
b
lim | g,.(x)dx=0.

ar—»ow

(A17)

Finally, from (A12), (A16), and (A17) we get

b
lim | G, (x)dx=—2"_,
a m—1

which is (A7) with f,, =2/(m — 1).

(A18)

ar—ro0
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To prove the condition (A8), we just have to remark
that accordingto (All), G, , (x) is a decreasing function of
m, so one has

Gma(x)<_—lf ( L )dx
’ ilm—1)J_,.\1+iax 1 — iax

2
m—1

= 2 (arctan ax + £><
m—1 2

in agreement with (A8).
We now consider the case m half-integer, with p>1 one
has
Fopivyna(X)
. —2
i(2p—1)x

" 1 _ 1
(1 4+ iax) @ =072 (1 —jax)?— D72
and

G(Zp + Dr2e (X)

=2 (J'x dx
i2p—1) \J-ow x(1 +iax)® 17

_x dx
cw x(1 —iax)®=072 )"

Using the relation

(A19)

Jx dx

- x(liiax)(zl’*”/z
_ 2
C(2p—3)(1 £ iax) -7

x dx
+f .
—w x(1 +iax)@ =372

We may write (A19) for p>2:
Gt 1yr2a(X) = [(2p—3)/(2p— 1)]G(2p~ D2, (X)
+ 82+ 1ys2a (X)s (A20)
with
8p+ /e (X)
. —4
i2p—1)(2p—3)

1 1 )
X — .
((l +iax) Y% (1 —iax)®—372] (A21)

But one has
b

lim 8ep+ 12 (x)dx =0,
arsow Jg

so it becomes, for p>2,

b
lim | G,y 1ya(X)dx

ar—w Jg

-3 .. (°
= 2§ — Jim | Gy (x)dx. (A22)
Now for p = 1, one has
Pierre Hillion 1747



1

-2 1
F3 . (%) =— (
124

and using (A15) we get

b
lim G3/2,a (x)dx = 81rb.

(1 +iax)'? (1 —iax

Substituting (A23) into (A22) gives
b
. 87b 47b
li G x)dx = = s
Praiga o p+ 13720 (X) -1 m-—1
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)”2)’

(A23)

(A24)

which is (A7) with f,, =4/(m — 1). The proof (A8) is as
for m integer.
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An oscillator with a small, but otherwise arbitrary, perturbing potential is considered
immersed in a random cavity radiation. Classical (stochastic) calculations are done when the
radiation has a Rayleigh—Jeans spectrum and a complete Planck spectrum (i.e., with zero
point). These are compared with the results obtained by a quantum calculation. First, a
comparison is made of stationary values, in particular, the energy. Then the emission and the
absorption spectra are calculated, in particular, the absorption spectrum for an arbitrary
incoming radiation. Finally, a detailed comparison is made of the absorption bands when the
perturbing potential has the form Ax** (K = 2,3,...). In all cases, it is explicitly shown that the
quantum and the classical behavior agree in the limit of high temperatures. It is also shown
that the classical system immersed in a radiation with complete Planck spectrum is much
closer to the quantum system than the fully classical system (with a Rayleigh—Jeans

spectrum).

I. INTRODUCTION

The problem of the equilibrium between radiation and
matter was historically at the origin of quantum theory." It is
natural, therefore, to return to this problem for a better un-
derstanding of the transition from quantum to classical elec-
trodynamics. With this purpose, we shall compare the emis-
sion and absorption of radiation by a simple system
according to both quantum and classical theories. For the
sake of simplicity it is convenient to deal with time-indepen-
dent problems, and this can be accomplished by considering
the system immersed in a cavity radiation at a given tem-
perature. As the temperature increases, quantum and classi-
cal behavior approach each other and we may study how this
approaching occurs. For instance, we can see how the dis-
crete spectrum characteristic of quantum theory transforms
into the continuous classical spectrum.

In particular, we shall study the approaching of the
quantum formulas to the classical ones with the decrease of
the dimensionless parameter fiwy/k 5 T, where T is the abso-
lute temperature and o, a typical frequency of the system
under study. This provides a physical example of the formal
limit %—0. In our case the above dimensionless parameter
can be made arbitrarily small by just increasing the tempera-
ture (our nonrelativistic treatment has the constraint
#iw, <mc?, but the classical limit can be obtained well before
this restriction is relevant).

As it is well known, cavity radiation has a Rayleigh—
Jeans spectrum according to classical theory and a Planck
spectrum in quantum theory. It is also possible to consider
an intermediate case, namely a classical system immersed in
a Planck’s cavity radiation. In this case it is more appropri-
ate to take the complete Planck’s law, i.e., including a zero
point random field, which leads to a theory known as sto-
chastic electrodynamics.” This theory, which has received
continued attention during the last 30 years, was considered
at the beginning as a possible alternative for quantum elec-
trodynamics. Indeed the theory is able to interpret a number
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of phenomena previously considered as purely quantal, but
it has failed in some essential points, like the inability to give
even a qualitative explanation of the discrete spectra of
atoms. As a result of the work made in the last decade,* > it is
now clear that stochastic electrodynamics is just an interme-
diate theory between quantum and conventional classical
electrodynamics and, therefore, it is most appropriate for the
study of the classical limit of quantum theory.

An interesting question is whether some modification of
stochastic electrodynamics, under the same spirit, could be
closer to quantum theory. One of the purposes of the work
here reported has been the search for ideas about the direc-
tion in which such modification should be made. It seems to
us that these ideas might be most likely found in the study of
semiclassical situations, such as a system immersed in cavity
radiation at a high temperature, which is the study here re-
ported.

The simplest system is the harmonic oscillator, and it
has been studied many times according to stochastic electro-
dynamics, both at zero and at a finite temperature. However,
this system gives relatively little information because it inter-
acts with only a narrow band of frequencies. The next simple
system is the oscillator perturbed by a small anharmonic
potential which can be treated as a perturbation, and this is
the system we study.

As a by-product of our calculation, explicit expressions
are obtained for several quantities associated with a (sto-
chastic) classical system immersed in an arbitrary random
radiation. These formulas could be useful in other areas of
mathematical physics.

In Sec. IT we calculate the system in equilibrium with
cavity radiation both classically and quantum mechanically.
In Sec. ITI we consider in detail the absorption and emission
of radiation of the quantum system and in Secs. IV and V the
corresponding classical cases. In Sec. VI we compare the
quantum and classical emission spectra as the temperature
increases for the particular cases of potentials of the form
Ax*¥ . Finally, in Sec. VII we discuss the results obtained.
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Il. THE SYSTEM IN EQUILIBRIUM WITH RADIATION

We consider an anharmonic oscillator in one dimension
as the simplest nontrivial system. We assume an arbitrary
potential A ¥{x), where A is used as an expansion parameter.
The Hamiltonian is, therefore,

H=H,+ AV(x), Hy=p*/2m+ imo}x?
with an obvious meaning for the variables.

As it is well known, the classical cavity (or blackbody)
radiation has the Rayleigh-Jeans spectrum and the statisti-
cal ensemble of systems in equilibrium with this radiation is
the canonical ensemble, having a Maxwell-Boltzmann
probability distribution in phase space. All thermodynamic
properties of the system can be obtained from the partition
function which, for our system, is

Z.(B =fe~ﬂ"dxdp

2.1n

=fe—-ﬂﬂo(1 — BAV)dx dp + O(A2)

= (27/Ba) (1 = A (V)q) + O(4?), (2.2)

where 8= 1/k T is the inverse of the absolute temperature
times Boltzmann’s constant and

(VYa=VBm/2mro, ) V(x)exp( — % Bmw?,xz)dx.

w

2.3)
From (2.2) it is easy to obtain the average energy, which is

(E)q = —j‘;—lnzd =B AV +m-‘§j-3-<v>c,

+ 0(4?). (2.4)

_For the quantum calculation, we shall represent by |n)
the eigenvectors of the Hamiltonian operator, H,,
(n + })#iw, being the corresponding eigenvalues. The eigen-
values and eigenvectors of the complete Hamiltonian, H,
will be represented by E, and |¢, ), respectively. To first
order in A we have

E, = (n+ VDhwy+AV,, V,=n|V|n). (2.5)

The quantum blackbody radiation has a Planck spectrum
and the quantum canonical ensemble in equilibrium is repre-
sented by the density matrix

p=(TreP)=1e==Z 51 3|4, )e™"(g,],

n=0 .
(2.6)
where the partition function is, to order 4,
Z,=Tre " =Trle (1 — ABV)]
=} csch(} Bfiag) (1 — BA (V),).
2.7)

The expectation (¥ ), can be easily calculated taking into
account that the probability density of the position coordi-
nate of a harmonic oscillator at a finite temperature is a
Gaussian.® It is obtained
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h o
Xexp[ —(’"ﬁ“’ )tanh(%—ﬂﬁmo)le. (2.8)

From the partition function, the average energy is easily ob-
tained to be

o= ()| v

- _4d -1 as
(E)o= -2z zﬁa)otanh(zﬂﬁmo)
+/1<V>Q+ﬁx-&%<v>g.
(2.9)

It can be realized that, in the high temperature limit,
B—-0, Eq. (2.7) goes to Eq. (2.2), except for the irrelevant
multiplicative constant /2, as it should. Then, ail thermo-
dynamics quantities agree in this limit, for instance the ener-
gy (2.9) tends to (2.4).

Now, we must consider the situation in stochastic elec-
trodynamics. We assume a purely classical ensemble im-
mersed in a complete Planck’s blackbody radiation (i.e., in-
cluding the zero point field ). In this case, no full equilibrium
is possible because, as it is well known, the unique radiation
in equilibrium with a classical system has a Rayleigh-Jeans
spectrum.” We may consider, however, the stationary en-
semble, whose rate of emission is exactly balanced by absorp-
tion, although the balance at each frequency no loriger holds.
In a sense, the system is in equilibrium with the radiation,
but the radiation is not stationary (its spectrum is chang-
ing). It is necessary to assume, therefore, that the cavity
where the system is enclosed is indefinitely large so that the
action of the system on the radiation is negligible. In these
conditions it is possible to calculate the stationary probabil-
ity distribution by Markov approximation techniques.>*®
This technique can be summarized as follows.

The starting point is the classical equation of motion of a
charged particle under the action of a force derived from the
potential (2.1) and immersed in a radiation field. It is

2

mi = —mwﬁx—-iﬂ— 2e

dx 3mc
where the third term in the right-hand side represents the
damping due to the reaction on the particle by the field emit-
ted by it, and the last term is the force due to the radiation
field. We work in the electric dipole approximation, which
consists of neglecting the dependence of & on the coordinate
x. The electric field, & (¢), depends only on time and it can
be considered a stochastic process, so that Eq. (2.10) is a
nonlinear stochastic differential equation with a nonwhite
noise. Then, the technique of the Markov approximation
consists of solving first the classical dynamical problem [i.e.,
Eq. (2.10) without the last two terms], so finding the possi-
ble orbits (periodic motions) of the system.

The motion along an orbit of energy E can be represent-
ed by

%+ e&,

(2.10)

X(E1) =3 x, (E)em®" (2.11)
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The frequency as a function of the energy can be calculated
by using canonical perturbation methods.” It is given to or-
der A by

d
E)=w1 -ﬁ’-o—x—ff;V),
o(E) w"( o N dE

where

27/ ey
§ sz V( 2E2 cos a)(,s)ds.
o \ / meg

For later convenience, we give the expression of |x,| as a
function of E, to order A, obtained from the same canonical
perturbation techniques,’

Ix (E)? = (E/2me})

<|-G)9

(2.12)

(2.13)

Vi (B
2nE dE

(2.14)
where

217/ wyy 2E
4; V‘EJ V( ~ sin a)os)cos 2wqs ds. (2.15)
o mwyg

As concerns the action of the last two terms, it can be consid-
ered as a perturbation with a characteristic time large
enough for the existence of an intermediate time scale, such
that the diffusion of the orbits is approximately Marko-
vian.*® The Markov approximation can be then considered a
lowest-order approximation in the coupling between the sys-
tem and the radiation, i.e., second order in the electric
charge e. It is therefore the classical counterpart of the first
order approximation in the fine structure constant a =e*/#c
so frequently used in quantum electrodynamics (QED). In
our classical system, the relevant small dimensionless pa-
rameter is ¥ =2e’w,/3mc>.

In the Markov approximation it is possible to calculate
the stationary ensemble immersed in an arbitrary but iso-
tropic homogeneous radiation. If we denote by S, the spec-
trum of the field, i.e.,

S, (@) = zir dO(E(t+ ) (1))e?, (2.16)

i

which is related to the radiation energy density per unit vol-
ume and unit frequency interval 4(w), by the relation,

Sy (@) = 2/ u(w), 217

the stationary probability distribution of the ensemble is, to
first order in 4,>*°

pu (EVdE
E 2 ’
=Cexp{_f : 3260 (E") 27_ g
o JeenSqlw(E")) | o(E)
(2.18)

where 27/ (E) is the period of an orbit of the oscillator as a
function of the energy and C is a normalization constant
such that the integral of (2.18) from 0 to oo is unity. The
period of the orbit appears in (2.18) multiplying dF as a
consequence of the transformation from phase space vari-
ables {x, p} to the energy variable E. It can be realized that,
in the case of a Rayleigh-Jeans spectrum, u(w) « w”, and
(2.18) leads to (2.2).
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The most interesting spectra fulfill the Wien law, which
means that f appears only in the combination, fw, i.e.,

Sy (@) = 20’ /37c* )¢ (Bhw). (2.19)
Note that # enters here just as a constant of action needed in
order to make dimensionless the argument of ¢, but it is not
necessarily associated with quantum theory. As is well
known, both Rayleigh-Jeans and Planck’s spectra fulfill
(2.19) with ¢ given by

drs(€) =€, dple) =(e—1)",

bpc(€) =1+ (e — n-n

(2.20)

The function ¢, corresponds to the complete Planck spec-
trum, including the zero point field. Substituting (2.19) into
(2.18) we get

P (EYAE

[ J"E dE’ ] 27

=Cexp| —

o fiw(E")$(flw(E")) ] w(E)
(2.21)

It is not possible in general to define a partition function,
associated with (2.21) and having the usual properties of
allowing us to get all thermodynamic quantities. However,
these quantities can be calculated directly from (2.21). For
instance, the average energy is'®

(E) =i, ¢( Shiwy)

+ (A#B /2)¢' ( Blw) (V") + A (V) , (2.22)

where the mean values correspond to the harmonic oscilla-
tor, namely, by taking w(E)=w, in (2.21). After a little
algebra, it is easy to see that this expression agrees with the
quantum one (2.9) if we take for ¢ the last expression
(2.20), i.e., the Planck spectrum with zero point, which is
the one usually associated with stochastic electrodynamics.
This fact shows that this theory is indeed intermediate
between classical and quantum electrodynamics, and also
that the Planck spectrum should include the zero point in
this context. Note that the full probability distribution of the
energy (2.21) does not agree with the quantum one, as also
there is no agreement for (E ) to second order in A 2.

ill. EMISSION AND ABSORPTION IN QUANTUM
ELECTRODYNAMICS

The probability per unit time of spontaneous emission
from the state |@, ) to the state |@, ) is given, in quantum
electrodynamics, by the Einstein coefficient

4,y = (405, /35 g, 1R|@) |2 3.1
with
@ = (E, —E)/#
=(n—Kwg+ (A/BV, — V). (3.2)

The matrix elements in (3.1) are of order 4 for
n — k #1, and thus only the coefficients 4,,,, _ ; are not zero
at this order. The quantum mechanical perturbation theory
gives for these coefficients, which we shall represent simply
by A4,,, the expression
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An=282w(32) [1+ 4 ((Vaz)”_(Vaz)n+l)
Ime 0 n
ﬁw V., — ,._1)], n=12,.., (3.3)
(o}

@ being the annihilation operator.
The spectrum of the anharmonic oscillator consists,
therefore, of a set of lines at the frequencies

w, = o[ 1+ (A /) (Vy, —V,_ )], n=12,...

34
Each line has a width equal to 4, + 4,,_;, and the line
spectrum becomes a continuous one when the separation

between neighbor lines is of the order of half the sum of the
two linewidths, i.e.,
27w} (e2) AWV, =2V, +V,_3)
fic/ 2(n—1)

Now we consider a mixed state of the anharmonic oscil-
lator having density matrix

3.5)

3mc?

A= @) Pal@als P.>0. (3.6)
n=0

The energy spontaneously emitted per unit time and
unit frequency interval is (neglecting linewidths),

I%w) =3 12,6(w—w,)+01?, (3.7
where .
12, =p,fiw,4, . (3.8)

We are interested in the ensemble in equilibrium with
blackbody radiation, i.e., the canonical ensemble such that

-gH e~ PEn 3
O = — p = —— .9)
P = Teem 7F s, e P5 (

After a lengthy but straightforward calculation it is obtained
for the total emitted power

W?EZIE,,
2e2ﬁw
°¢P(ﬂﬁwo)
A ¢P(Bﬁwo)) ., ]
1 3 Vv )
X[ +2m(o3( + PR ¢P(ﬂfmo) ( >Q

(3.10)

where ¢y, (€) is given by Planck’s formula (2.20), and [com-
pare with (2.8)]

d2
#e=T:(457)
[ )| e
Xexp[ — L";i“i‘z tanh(—;—ﬂﬁwo)xz] . (3.1D)
The next step is the calculation of the absorption and the
stimulated emission when the system is immersed in an elec-

tromagnetic field with energy density per unit frequency,
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u(@). The two processes cannot be separated physically and
we shall calculate both simultaneously. The net energy ab-
sorbed by the system per unit time and unit frequency inter-
val, in the state given by (3.9), is

I2(0) = u(w)a%w),

where a© (@), the absorption coefficient, is given by
= P»
n=0

z B,,kts(a) wkn) — z B,,kts(a) wnk)] N

k>n k<n

(3.12)

a%(o)

(3.13)

B, being the Einstein coefficients for absorption (if n < k)
and stimulated emission (if #» > k), which are known to coin-
cide for the same pair of states. To order A, only k =n + 1
contribute and we get

2 P [Bn+ 10w —@yi1)
n=0

a?(w) = —B,6(w—w,)],

(3.14)

where we have written B, and w, for B,,,_, andw,,_,
respectively. From the well known relation of the Einstein A
and B coefficients we get

) = 3 %0 —a,)
n=1
with
al = 3ﬁ O | @ |21 @n I (Pu_y —Pn)
2r%e’w,
= n(pn—l'_Pn)
3mw,
x[1+ A [(V“‘“)n—z—(""“)""]].
it n
(3.15)

Finally, the total power absorbed is, to order 4,

we . 2r¢ u(a)o)(V Yo. (3.16)

u(e o)+/1

The system is in equlhbrlum with radiation if the spon-
taneous emission (3.8) is exactly balanced by the combined
effect of absorption and stimulated emission (3.12). The
condition obtained for equilibrium is that () is given by
the Planck formula (without zero point) (2.20).

We must call attention to the fact that the validity of
expressions (3.10) and (3.16) in general imposes restric-
tions to the temperature. This is because those expressions
demand that the values of @ contributing to 7 2(») and
I2(w) be close enough to ,. Thus, if ¥'(x) increases at most
as fast as x> when x— «, the expressions are valid for
all T. However, if V(x) goes faster than x?, that is,
lim,  _ V(x)/x* = oo, then the larger T the smaller A, in
such a way that some combination of A and T must be kept
small. A necessary condition can be obtained by imposing
@, =g, 1.6, A(V, =V, _ 1)/ fiwy €1 [see (3.4)]. If we
consider potentials of the form ¥ = x?%, K> 1, it is enough
to consider this condition for the largest values of # in which
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we are interested [see (B3a)]. The maximum of @2 is ob-
tained to order zero in A for n,, = ( Bfiw,) ' [see (3.15)
and (6.11)]. For high temperatures, n,, > 1, and we can ap-
ply the results of Appendix A to get [see (6.12a) with
R~Hy ]

K (2 Alkg Y5 !

2K (mwd)*
IV. SPONTANEOUS EMISSION IN A CLASSICAL
ELECTRODYNAMICS

We consider a system described by Eq. (2.10) and we
must study its emission and absorption of radiation. As in
the quantum case, there is spontaneous emission associated
with the damping term in (2.10) and both absorption and
stimulated emission associated with the last term of (2.10).
That is, the power transferred from the field to the particle,
xE, is sometimes positive and other times negative. Indeed,
very likely this fact inspired Einstein in his theory of absorp-
tion and emission of light, but in recent times it is often stated
incorrectly that the stimulated emission (and even the spon-
taneous emission) is a purely quantum effect.

The power spontaneously emitted per unit frequency
interval can be found from a Fourier analysis of the fields
produced by the charge and a calculation of the contribution
to the energy due to the corresponding Fourier components
obtained in that analysis. Averaging over all possible states,
it is found'! that

£1. (3.17)

Iﬁ‘(w) _ 87re W

f dEp(E) Y, 80 = no(E)x, ().

4.1)

The Fourier components x,, are of order A" if n > 1, and
then only x, contributes to order A, a situation that corre-
sponds to the fact that in the quantum case only the Einstein
coefficients 4, contribute to order 4 [see after Eq.
(3.2)]. As a difference with the quantum case, however, the
Dirac delta disappears with the integral over E, and thus the
spectrum is continuous [if p(E) is continuous]. The total
emitted power (integrated to all frequencies) is

wel = 87"3 f dE p(E)w* (E) |x,(E) |2 (4.2)

Itis obv1ous that the (continuous) spectral form of the
emitted power (4.1) cannot agree with the (discrete) quan-
tum expression. As for the integrated power, (4.2), it does
not in general agree with (3.10). We are interested in the
classical ensemble in equilibrium with a radiation having a
spectrum S . The distribution function p(E) is now given
by p (E£), expression (2.21). The total emitted power,
(4.2), can be calculated to first order in A by making use of
the expansions (2.12) and (2.14) as well as expression
(2.19). The result is given by

W=
3mc?
A ¢ ( Bhiw, ) " ]
e (s ).
[ 2mw} pheo ¢ Bhw) )
4.3)
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where (V") is obtained by writing (2.21) with o (E) =w,,
namely, the harmonic oscillator. This mean value coincides
with the quantum one (3.11) only if the spectrum is that of
Planck with zero point. On the contrary, as concerns ¢,
(4.3) agrees with the quantum result (3.10) only if the spec-
trum is that of Planck without zero point.

We must call attention to the fact that the expression
(4.3) is valid only if the expansions (2.12) and (2.14) are
valid for the energies contributing appreciably to (4.2).
Note that p, (E), (2.21), is negligible for £> #iw, ¢ ( Sw,)
X (1 + O(A)). Then, if we consider potentials of the form
V=x*, K> 1, the condition w(E) ~w, yields [see (6.2)
and (6.3)],

3 (ZK) o) [fiwyd ( Biwy) 1F ~ 1<, (4.4)
For high temperatures this condition is the same as the quan-
tum one (3.17).

V. ABSORPTION AND STIMULATED EMISSION IN A
CLASSICAL ELECTRODYNAMICS

The absorption of energy by a classical (stochastic) sys-
tem immersed in a cavity radiation at a given temperature
from an incident electromagnetic field has been calculated'?
by use of the Kubo linear response,'* which is also based on
the smallness of the parameter ¥ = 2e’w,/3mc>.

This quantity in fact accounts for absorption and stimu-
lated emission by the system and would correspond to the
quantity 72 calculated in Sec. III. The absorption coeffi-
cient, defined by

I(w) =a(o)u(w), (5.1)
is given by'2
a“'(a))——we
>< Z nlx, |*8(w — now(E)), (5.2)
where
Ge __ 20%E)  _ 1 (5.3)

Grr 370°S, (w(E)) #w(E)d(fhw(E))

Again,onlythen = + 1terms contribute toorder 4. By
using the expansions (2.12) and (2.14) we obtain for the
total absorbed power
_2e17'2u( A 72’
Im Imlw

we (V”>u (w) + O(A?).

(5.4)

This expression coincides with the quantum one, given by
(3.16), when (V") = (V") ,, that is, the spectrum of the
radiation in the cavity is that of the Planck with zero point.
The same expression (5.4) gives'' the absorbed power from
the radiation in the cavity by taking u = (#iw*/mc®)¢.

We make a final remark about these results. The state
described by p,; (E) is the stationary state corresponding to
the radiation with spectrum Sy (). This means that the
system is in global equilibrium (equal absorbed and emitted
powers) with the radiation. This equilibrium is fulfilled at all
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orders in A. Now, up to first order in A only the frequencies
close to w, contribute to the emitted and absorbed powers
given by (4.3) and (5.4). Consequently, these expressions
must coincide, which can be easily checked by expressing
u(w) in terms of ¢. However, there is radiative equilibrium
only if the radiation in the cavity has a Rayleigh--Jeans spec-
trum (see Refs. 3 and 11). Note that for this equilibrium to
hold, not only the global absorbed and emitted power must
coincide, but also the detailed structure of the emission and
absorption of energy given by  ¢'(w) and I ¢ (w). We finally
note that a similar remark to that appearing at the end of
Secs. III and IV is also applicable to the calculations in this
section.

V1. SHAPE OF THE SPECTRAL ABSORPTION BANDS

In the previous sections we have compared the quantum
and classical spectral line around @, in what concerns the
total area lying below the curves I 2(w), I (@), I 2(w), and
I(w), that is we have compared W2, W<, W< and W¢. In
this section we want to go further and analyze the very shape
of those curves. However, we must restrict ourselves to po-
tentials of the form

V=x* K>l 6.1)

in order to get explicit results. The study of more general
potentials presents special difficulties, as, for instance, that
in general the function w (E) does not have a unique solution
for E and this complicates the analysis, as we shall shortly
see.

We remark that for this kind of potential (6.1), the clas-
sical limit, Sfiw,— 0, must be performed in such a way that
some combination of 4 and T'must be kept small (see the end
of Secs. IIT and IV).

The first information about the shape of the curves is
obtained in the lowest order in A of the expressions giving
I2(0),IN(®),]2(w),and I ¢ (w). Let us consider separate-
ly the classical and the quantum case. We first analyze the
classical case due to its simplicity.

A. Classical case

As for the absorption, we study the shape of g (w),
which is characteristic of the system, notso I (@) = a® ()
Xu(w). It is easy to see in Egs. (4.1) and (5.2) that to
lowest order in A, I ¢!(w) and a® (@) are proportional. Thus
their shape is similar. Let us then concentrate on @ (w).

In order to integrate over E in (5.2) we need to express
E in terms of w. For the case of (6.1), the expression (2.12)
gives

w(E) =wo(1 +AEX~'Ty), E>0, (6.2)
with
K 1
Te =— (ZK) _— (6.3)
K7k \K/ (ma? )X
and then
— 1/(K—1)
E= (a) w") s OPW,. (6.4)
Awo Ty _
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Now we may integrate over E (recall that only then = 1
and n = — I terms contribute). To lowest order in 4 we get
2m%e? 1 1

3m  [fwep( Bhiw,)])* (K —1)

acl(w) —

a)(leK ’
(&) _— wo) VK—D ]
weral - , (6.5
p[ (AT )= iwp ( i) “

when w>w,, and ¢ (o) = 0 when o < w,.
It will be convenient to distinguish three cases, namely,
K=2,K=3,and K> 3. For K = 2 we have

(@) = 2r2e? (mzw% )’ 1 (©—o0)
T Tam \ 310/ Thow( Bhay) 12 °
(@ — wg)m*w} ]
_ 27 %% |, , 6.6
xe"p[ g By |7 7% (69
andforK=3
() = e’ (2m3w3) 1
T 3m \ 154 ] [Fiwep( Bhiw,) 1>
- \'(0 —wo 2m3w3 ]
Xexp Foop i) 54 y WP .

6.7)

We see that whereas for K>3 the function ¢ (@) is al-
ways decreasing, for K = 2, a” (@) vanishes at @ = w, and
has a maximum at

o, = 0+ (3A%/m*w,)d( Bhw,) . (6.8)

On the other hand, for K > 3 a (@) diverges at @ = w,, like
(0 — wp) ~ K3/ &-D) whereas for K = 3a° (w) tends to
a finite value at @ = w,,.

As regards the width of the curves, it can be roughly
estimated from (6.5) as

Ao ~ ATy [fiwgp( Bhig) 1%~ . (6.9)
Note that, according to (4.4), for the perturbative calcula-
tion to be valid, the width must be small, Aw/w, € 1. Itis also

clear that condition (4.4) does not guarantee that the tail of
a“ (w) is correctly described by (6.5).

B. Quantum case

First of all we note that here again the expressions 7 2,
and a2 are proportional to each other, to the lowest order in
A. Let us then consider a2. From (3.15) we obtain

ﬁnQ= (27%€*/3m) (e — 1)%g ~ Fhoupg — nheo (6.10)

Now we have definite lines at the frequencies given by (3.4).
We may consider that they present a “continuum” aspect
when (3.5) is satisfied, that is, the width of the lines is of the
order of the separation between neighbor lines. From (B3c)
it is easy to see that the ratio between the width and the line
separation decreases when n (and the frequency) increases
for K > 3. For K = 3 that ratio is approximately constant if
n3 1, and for K = 2 it increases with n. When n is of order of
( Bhw,) ~! and the temperature is high enough to have
PBfiw, €1, we can use the results of Appendix A to get
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@, =ao[ 1 + ATy (nfiwg)* ~1] (6.11a)
and
0, — o, |~y AT (Fiwg)X~'n""2(K —1).  (6.11b)

Then, for frequencies such that 1<n S ( ffiw,) ~' (or
smaller when K > 3) the spectrum can be considered contin-
uous when the following condition is satisfied:

4 keT (N x_ 14 Fiwg

3 me? (ﬁc)N [AT s D7) ky T (K=1D.
Taking into account condition (3.17), it is clear that (6.12)
can be satisfied in the region #w,<kyT<mc? for high
enough temperatures. For larger frequencies corresponding
to n> ( fhiw,) ~' the perturbative calculations based on
(3.17), are not valid.

When (6.12) is satisfied, we may obtain the value of
a(w, ) for each line by multiplying the value a< times the
density of lines in that point. The density of lines, u,,, is
related to the inverse of the line separation. There is not a
unique way of defining i, except for the case n> 1, for then,
®, —@,_, =0,,, —w,, and we can write u,

(6.12)

= (w,,, —,)”". [This can be easily seen by using

(6.11b).] Now, if we define
a?(w,) =a%u, =a%(w,,, —o,)"" (6.13)

and write n in terms of @, in expression (6.12a), we get
a? (w, ). Using the same functional dependence for v #w,,,
we have

2 f Biwo,  1\2
aQ(a))=27Te (e l)e_ﬁﬁwu 1
fi, (K—-1)

X( 1 )2/(K—1)(w_w )~ (K= 3/(K = 1)
0 ATk o
(a)—a)o)l/(K—l)B
Xexp[— (AwoT )V KD , ©>ag, (6.14)

where T is given by (6.3).

According to the discussion above, this expression is
valid only when w=w, such that 1<n S ( BAw,) "' We
must then consider high temperatures, and in this case
(6.14) is exactly accounted for by the classical expression
(6.5).

As concerns the rest of the shape, a qualitative analysis
can be made distinguishing again the three cases, K = 2,
K=23,and K> 3.

For K = 2 the problem is trivial because the separation
between lines is constant and then

a?(w,) =a% (@, , —w,) .
An explicit calculation gives finally
n=(o—w,)/12(A /%) (#/2moy)?

and
2 B, _ 1\2 2 3\2
a?(w) = 2 (e 1) e~ Pl (_m a)o) (0 — wy)
3m Fiw,y 34
_ 2.3
XeXp[_W]’ (6.15)

which has the same qualitative behavior as the classical
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expression (6.6) and coincides with it in the case of high
enough temperatures.

For K>3 there is no unique way of defining x,,. A rea-
sonable definition arises taking certain average between the
separation on the right and on the left. Thus, for K = 3 the
choice

Hn = [a(a),, _wn—1)+(1“a)(wn+l _wn)]_l’

O<axl
gives
miw} 1
o =
15A# n+ (3} —a)
and
0®(0) = e’ (e'”“"’ — l)ze_Bﬁ%(Zm%g)
3m fiw, 154
1
x O — ® —172
R )
3
Xexp| — w—wo_lﬂﬁwo , w30, + &,
& V2
(6.16)
with
& = 15A#/4m’w} . (6.17)

It is easy to see that the result is very close to the classical one
(6.7) for high temperatures when the frequency is such that
® — wy>E&. Note that w, + £ is the first frequency observed
in the quantum case. Moreover the concept of line density
loses its meaning for the first line.

If we perform the classical limit #— 0, in such a way that
(3.17) holds, we verify that a2 (w) and a® (@) coincide for
any frequency.

For the case K>4 we easily see that the situation gets
more complicated. Anyway it is possible to show that the
curve is everywhere decreasing, if the line density is defined
by averaging the separation to the right and to the left, that
is,

te=[a(w, -0, )+ -a) (@, —a,)] ",

0<a«l. (6.18)
We only need to show that
nu, —(n+1Dp,., >0 Vnz2, VK>4. (6.19)

IfwecallA, =w,
if the relations

— o, _ , the above inequality is satisfied

An+l >An>.'.>A2>Oy
nA,,+2 —(n+ 1)A,,+1 >0,

hold. Such inequalities are proved in Appendix B and then
we deduce that with the above choice for y,, the curve
a? (w) is everywhere decreasing and thus has a qualitative
behavior similar to the classical curve. As we have shown
above, both curves coincide for high temperatures if we con-
sider frequencies large enough for the assymptotic expres-
sion (6.11a) to be valid. For the case K = 3, we have seen
that this happens when w — wy> £. This restriction can be

Vn>1l, K>4, (6.20)
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expressed for the general case in the following way [see
(6.11a)]:

(@ — @9) /A0y Ty (Fig)* !> 1. (6.21)

In the classical limit combined with condition (3.17) (i.e.,
T-w,A-0,and AT*~! fixed but small) this restriction
disappears, and a? (w) coincides with ¢ (@) for any fre-
quency.

VII. DISCUSSION

We have compared the quantum and the classical an-
harmonic oscillators immersed in cavity radiation at a finite
temperature. As is well known, the radiation in equilibrium
with the system has a Planck spectrum in the quantum case
and a Rayleigh-Jeans spectrum in the classical one. As ex-
pected, we have found that in all cases the quantum and the
classical behavior approach each other as the temperature
increases. We have also considered the classical system im-
mersed in a radiation having a Planck spectrum with zero
point, and we have shown that its behavior is much closer to
the quantum one than the purely classical case (i.e., the sys-
tem immersed in radiation with Rayleigh—Jeans spectrum ).
This is the most interesting result of our calculations. For the
sake of simplicity we shall label QED the first system, CED
(for classical electrodynamics) the second one, and SED
(for stochastic electrodynamics) the oscillator immersed in
Planck’s radiation with zero point. Of course, there is not
detailed balance in SED, i.e., there is not an equilibrium at
each frequency, but the oscillator can be stationary if it is
inside a very large cavity.

In Sec. II, we have calculated the average energy of the
anharmonic oscillator and found that there is agreement to
first order in A at all temperatures between QED and SED
[compare Eq. (2.9) with (2.22)] taking ¢ = ¢pc given in
(2.20). In contrast, both results agree with CED (2.4) only
at high temperatures. The agreement between SED and
QED disappears at second order in A, as has been shown
elsewhere for zero temperature. ,

In Secs. III-V, we have compared the power emitted
and absorbed globally (i.e., summed to all frequencies).
Again CED agrees with either QED and SED only at high
temperatures. In contrast, much closer results are obtained
in the comparison of QED and SED. The spontaneously
emitted power in SED [see Eq. (4.3)] does not agree with
the QED result (3.10) because the function ¢ of the former
corresponds to the complete Planck spectrum (i.e., includ-
ing zero point) and the later to the incomplete one. How-
ever, it is not possible to put in the SED (4.3) result the
incomplete Planck spectrum because then the average (V")
does not agree. Indeed, as discussed above, averages in SED
must be calculated with the complete spectrum. However, it
is easy to realize that agreement exists at all temperatures
and first order in A between SED and QED if we subtract in
the former the zero point contribution. However, the sta-
tionary average values must be always calculated including
the zero point field. The absorption and stimulated emission
is given by (3.16) for QED and (5.4) for SED. Indeed, both
expressions are formally identical. However, it should be
noted, as before, that (V") in (5.4) should be calculated for
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the system immersed in radiation with the complete Planck
equation. Then, the net power absorbed (i.e., after subtrac-
tion of the stimulated emission ) is identical 1o first order in A
for an arbitrary incoming radiation in QED and SED. No
agreement should be expected at higher orders in A as the
stationary values already do not agree.

So far so good for the total power emitted or absorbed.
However, the spectral distribution is sharply different in the
quantum (QED) and both classical (CED and SED) cases.
In fact, the former is a discrete spectrum whilst the latter are
continuous. In every case there are absorption and emission
bands at @, 2m,, etc. Each band is resolved in lines in the
quantum case. These lines have a natural width which be-
comes of the order of the distances between neighbor lines
for small anharmonicities [see Eq. (3.5)] and also for high
temperatures, even if the potential increases faster than x>
[see condition (6.12)].

We have made a comparison of the shape of the bands
(or “bunches” of lines) in Sec. VI for anharmonic perturba-
tions of the type Ax*%X (K = 2,3,...). Now the agreement be-
tween QED and SED exists only at high temperatures. This
agreement holds for any frequency when K =2 [compare
Egs. (6.6) and (6.15)] and only for large enough frequen-
cies when K>3. This restriction disappears in the classical
limit, #iwy/k 5 T—0. '

In conclusion, we found that SED gives results much
closer to QED than purely classical electrodynamics, very
close indeed in some cases. However, it is shown again that
both theories are certainly not identical.
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APPENDIX A: ASYMPTOTIC EXPRESSION FOR o,,

For a potential Ax*¥, the frequencies w, appearing in
the quantum emission and absorption are to first order in 4

- (en)
fiw, \2ma,

X(n|(@+a*)y*|n) —(n—1|(a+&)*|n— 1))] .

(Al)

We want to calculate this expression for large 7.

In the mean value of (8 + a* )%, only those terms hav-
ing the same number of creation as annihilation operators
contribute. Each term gives after reordering a polynomial in
the number operator N= @7*a, in such a way that both the
higher power appearing is K and its coefficient is the unit.
Moreover we have (2*) terms like that. All this means that

X
(nl(@+a*y*|n) = 3 afOn’, ai® =(2K)
j=0 K

Now, for large n, only the first term appearing in (A2) is
important

~ A4 y2K —~ X
(n[(@a+a*) |n)_.(2§)n

and then

@, =a)0[1 +

(A2)

(A3)
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(@@ + 87K |ny — (n— 1@ +a")*|n—1)

z(zlf)(nK— n—l)K)anK_l(zlf), (A4)
which leads to expression (6.11a).
APPENDIX B: PROOF OF EQS. (6.20)
Let us define, by induction,
O = (n|(a+a*)*|n), n>0, (Bla)
i,’,’, =¢y, " —¢i 1, n>r>0. (B1b)
It is obvious that
= (A /%) (Fi/2mey) ¢ 2, (B2)

and then, the positivity of A, and the relations (6.20) are
equivalent to showing

&>0, nx2, (B3a)
>0, n>3, (B3b)
"¢;‘3n’+z —(n+Dg2, >0, n>1, k>4 (B3c)

In fact we shall prove (B3c) and
xa>0, nxr, Vr (B3d)

To do this, let us define the following operators acting
upon the quantities ¢{’):

88 =dkns1 — L=, > (B4a)
E$i) = din s > (B4b)
The following relations are immediate:
o =E"T'0), >, (BSa)
') =i, (B5b)
E=1+56. (B5c¢)

They allow us to write

o=aror-ep=y (" 7)ot

j=0

(r) =FE"""

=5 (e (B6)
j=o N\ J
Now, let us define the quantities
(k+m)!n!< A | At Nk(Ad+\m
wiom = ——————(n(@+a" )@ )”ny. (B7)
Cmim = ket )
An easy calculation yields
;n,k,m _gnfl,k,m :é‘nfl,kfl,m—o—l ’ (B8)
and from the definitions (B1) we get
§n~r2k—rr, r<2k
= ' ' ’ B9
k,n [O, > 2k, ( )
and particularly
§02k~nn’ n<2k)
V=1"" ' B10
k,r [0’ n> 2k ( )
Consequently, from (B6)
"o (n—r
I(c,rizz Z ( )gozkfr hr+ic (Bll)
j=0 J

j<2k —r
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The positivity of ¢} for all n>r will be guaranteed if all
the quantities (0| (a + a*)* (a*)™ |0) are shown to be non-
negative for all k,m.

Those quantities are obviously nonvanishing only in the
case that m<k and both integers have the same parity.

By making use of the recurrence relation

O](a@+a*)“a*)mo)
:m<0|(& +a+)k—1(a+)m—llo>

+ (k—D){0la+a*)* —*@*)"|0), (B12)
it is easy to obtain
(0|(a+a*)*a*)m0)
!
:—k—'-—, m<k, m -+ k even. (B13)
(k —m)!
With this, from (B7), (B11) can be written as
n—r __ 1
-y (n 'r) ' (2k)! | (B14)
o N 7 J(r+ N2k —2r—2nHN

Jj<k —r
expressions which are clearly positive. This proves (B3d).
To prove {B3c) we make an explicit calculation

n¢1(<,2n)+2 - (I’l + 1)¢1((2n)+]
_ 2": (n) (2k)In
S0 N (G 22k —4 =2
Jj<k —~2
S (n—l) (2k)!(n + 1)
o N T/ (24NDN2k —4 =2
jek —2
_ (2k)'n
(n+ 212k — 4 — 2m)N!
"t (2k)!
+
,-Z’o (j+ 212k — 2j — )1l
Jj<k —2

)oY

where the first term exists only if n<k — 2.

All terms in that expression are positive except for the
j=0term.

However, the contribution of both j = O and j = 1 gives

n() —("TH+1) @) —(CyHm+1)
32k — 6)! 2002k — 41

(B15)

__lh__[i_ 1 ], (B16)
22k — 6)!! 2k —4

which is positive for k>4. This finally proves (B3c).
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Direct calculation of the Berry phase for spins and helicities

Thomas F. Jordan
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The Berry phase for spins or helicities is calculated in a simple way in which it appears more as
a property of the spin states than of the Hamiltonian. The calculation applies to nonrelativistic
particles or relativistic particles with either zero or nonzero mass. A simple way to see how the
Berry phase corresponds to rotation of the electric and magnetic fields of plane-polarized light

is also pointed out.

I. INTRODUCTION

The Berry phase' that is the object of experiments re-
cently proposed® and reported® is for spins or helicities. For
these cases it can be calculated more simply, in some re-
spects, than it was' originally. I do that here in a way that
brings out some fundamental aspects. One is that the Berry
phase appears more as a property of the spin states than of
the Hamiltonian. Another is that it makes no difference
whether the particle with spin is nonrelativistic or relativistic
or whether it has zero or nonzero mass. I also point out a
simple way to see how the Berry phase corresponds to rota-
tion of the electric and magnetic fields of plane-polarized
light.

After the first version of this paper was finished and
sent, I received a paper* by Bialynicki-Birula and Bialynicki-
Birula in which the Berry phase is obtained from the action
of the Poincaré group on the states of relativistic particles
with spin or helicity. We use different methods but get the
same results and take a similar point of view that gives more
attention to the spin states than to the Hamiltonian.

Il. BASIS

I repeat the first few steps of Berry’s calculation’ to clar-
ify the assumptions that need to be made, point out that the
spin states play a bigger role than the Hamiltonian, and set
the stage for arguing that the calculation applies equally well
to nonrelativistic particles or relativistic particles with either
zero or nonzero mass. Consider a particle spin represented
by matrices S. For each real three-vector k let k be the unit
vector in the direction of k. Then &S represents the projec-
tion of the spin in that direction. Let |k*S = m) be normal-
ized eigenvectors of kS for the eigenvalues m with phases
chosen to make the vectors differentiable as functions of k.
For example, they can be obtained by making rotations with
the spin matrices from the standard eigenvectors for k in the
z direction.

Suppose the evolution of spin states in time is governed
by a time-dependent Hamiltonian H(¢) so that at each time ¢
thereis ak(¢) such that |k{#)S = m) for fixed m is an eigen-
vector of H(¢) with eigenvalue E,, (¢),

H(t) k() S =m) = E, (1) |k(£)S = m).
Then one possible state, which could be realized as adiabatic

evolution caused by a slowly changing Hamiltonian, is rep-
resented by
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(1)) =e” “" O™ k()8 =m),
where w,, and y,, are real functions of f and

%wm(t) =E, (1).

We are not assuming anything about the phase of this state
vector. The Schrédinger equation

.d
l;; [W()) =H(@) (1))
implies

d v/t X d
ST O =IVEOS = mlrS =m)|, Ly L),

where V is the gradient with respect tor.

Suppose that in the time between 1 =0 and ¢t = T the
vector k(¢) moves around a closed loop C in three-dimen-
sional space so that

k(0) =k(T).
If
19(0)) = [k(0)S = m)
then
[W(D)) =e™ “" D™ k(0)S = m),
where
T
w,,(T) =J E, ()dt
(0]
and

7 (C) =i [ VoS =mlpS =m)], k.
C

Evidently w,, (T) comes from the dynamics. It depends on
the Hamiltonian. The remaining phase y,, (C), the Berry
phase, comes from k(¢) moving around the closed loop C. It
does not depend on how that is made to happen; it does not
depend on the Hamiltonian. It appears simply as an integral
around C. We can also write it as an integral over a surface §
enclosed by C,

VYm (C) =ifszvl(?l.s=m|?l.S:m>|r,:k:r:.ds’
s

using gradients V, and V, with respect to r, and r,. No
further consideration of the Hamiltonian is needed.
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Hl. SIMPLIFICATION
It is from this point that the calculation is simplified. Let
=R(O)k,

where R(8) means rotation through the angle |8| around
the axis in the direction of 8. Then

k'S =kR1(0)S = e~ ®Sk.Se®s

soe” “*S|1}.s = m) is an eigenvector of k'S for the eigenval-
ue m. Then

kS =m) = Pro—0S|kS — m),
with 8, a real function of k and 0. If
k' =k + Ak,
then to first order in Ak
l kS=m)= gomkrak, — ik XAk kS=m)
= |k'S = m)
+ ila,, (k) + k ~%k X S)Ak|kS = m),
with @, a real three-vector function 6f k, so
VIS =m), (k) + k ~2kxS)|kS = m)
and
V. XV, (?S=m
= (kS = m|(at,,, (k) + k ~?kXS)
(@, (k) + k ~2kxS)|kS = m)
=k ~*k(k'S = m|k-SXS|k'S = m)
= ik ~*k (kS = m|k-S|k-S = m)

k“"‘l

?1'8 = m>|r,=k=rz

= imk ~k,
Thus we can see that
VY (C) = —mQ(C),

where Q(C) is the solid angle of vectors k enclosed by C.
Since V-r—?# is zero everywhere except at the origin we can
see the surface integral for ¥, (C) is not changed if the sur-
face S is changed without bringing it across the origin of the
k vectors.

IV. RANGE OF APPLICATIONS

It is remarkable that for each nonzero spin eigenvalue
m, any phase factor ¢ can be obtained from some solid angle
Q. This provides a wealth of opportunities for interference
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effects. In particular, for photons, when m is - 1, the phase
factor —1 is obtained when () is , for example when C is
the circle made by a vector k(#) that revolves around an axis
at a 60° angle from the axis. Thus it is particularly interesting
to see that the calculation made here applies to relativistic
particles with zero mass.

In fact the calculation applies equally well to nonrelati-
vistic particles or relativistic particles with either zero or

. nonzero mass. From the Foldy form for irreducible unitary

representations of the Poincaré group® we can see that for
relativistic particles with mass the matrices and states for
spin and helicity are the same as for nonrelativistic particles.
By using a basis of helicity eigenvectors® we can see that the
spin and helicity matrices and their eigenvectors are not
changed when the mass goes to zero.” When the mass is zero
there are only two possible helicity states for a particle but
they are part of a (possibly larger) space where all the spin
matrices and eigenvectors are the same as for a particle with
mass.’ Since each Berry phase is for one helicity state, the
formula for the Berry phase that holds when the mass is not
zero must continue to hold when the mass is zero.

In the clearest experiment reported so far,® the Berry
phase measured is an angle of rotation of a plane of polariza-
tion of light. Here is a simple way to see how changing the
helicity states of photons by Berry phases corresponds to
rotating the electric and magnetic fields E and B. The field
operators B + /E contain only creation operators for pho-
tons with helicity -+ 1 and annihilation operators for pho-
tons with helicity — 1 so a change of photon states for heli-
city + 1 by phase factors e¥™ caused by Berry phases

Y (O)=FQ
has the same effect on matrix elements of the field operators
as a change of field operators that gives
B + /E—e"(B +iE),
which is equivalent to
B-Bcos) —Esin}, E-Ecosl+ Bsin{l.
This is observed® as rotation of the plane of polarization.
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The proof of a result analogous to that in Koelman and de Muynck [Phys. Lett. A 98, 1
(1983)] is given for the case of unbounded observables. If two, not necessarily bounded,
observables are represented by a positive operator-valued measure, then the measurement of
any of them is undisturbed if and only if they commute. The Naimark theorem on dilations of
spectral functions is exploited. A stronger version of Wigner’s theorem is given.

I. INTRODUCTION

It has been shown in Ref. | that the commutation of two
observables can be implied by a kind of minimum principle.
However, the proof given in Ref. 1 is valid only for bounded
s.a. operators with discrete spectrum. In the present paper
we prove an analogous result, without this restriction.

1. UNIQUENESS OF THE ORTHOGONAL SPECTRAL
MEASURES

We start with a simple observation that the Kadison
inequality for dilations can be extended for unbounded oper-
ators in the following sense.

Lemma I: Let B be an unbounded s.a. operator in a
Hilbert space H, let P be the orthogonal projection onto a
Hilbert subspace H, of H, and let A = PBP be as.a. operator
on H,. Then for every feD(4?)ND(PB*P),

(f14°f)<(f|PBPf).

Proof: We have P<1, thus for all geD(B?)

(Bg|PBg)<||Bg|* = (g|B’g).
For heD(BPB)ND(B?) we have

(h |BPBh)<(h |B?h).
Hence, for feD(A*)ND(PB*P) [then feD(BP)],
PfeD(B?*)ND(BPB). Putting h = Pf, we have heD(BPB),
and thus

(f1(PBPYf)<(f|PBFf). m
In a symbolic way we write

(PBP)*<PB°P.

With the same notation as in Lemma 1 we have the fol-
lowing lemma.

Lemma 2: Let P be an orthogonal projection and B a
s.a. operator. Then

(PBP)> = PB°P (1)
if and only if P commutes with B (i.e., P commutes with the
spectral projections of B).

Proof: If Pcommutes with B, then obviously (1) holds.

Conversely, let (1) hold. Then D(A4?%) = D(PB*P),
where, as before 4 = PBPis as.a. operator. Let E denote the
spectral measure of 4 and let A be a bounded Borel set in R'.
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Denote A, = E(A)AE(A) = AE(A). Then 4, is a bound-
ed s.a. operator in H,. Further, we have

A, = E(A)YPBPE(A) = E(A)BE(A),

since E(A)<P =1, . Thus the operator E(A)BE(A) is
bounded for every bounded Borel set A in R'. By the assump-
tion we have

A,>=PE(A)B’E(A)P

=E(A)B?E(A) = (E(A)BE(A)),
that is, for every feH,
(f|E(A)B2E(A)f) = | BE(A)f|* = |[E(A)BE(A)f||%

and thus BE(A)f= E(A)BE(A)f.
Obviously, for every n = 1,2,..., we have

B"E(A)f =B" " 'E(A)BE(A)f
=+ =E(A)B"E(A)f=A"E(A)f.

Because for all bounded Borel sets A and all feH the vectors
E(A)fare analytic for the operator A, they are also analytic
for the operator B. The set {E(A)f |feH, A bounded Borel} is
dense in H . Thus, by the standard argument, for every teR!,
we have

e"PE(A) = E(A)e™®P.

It follows that B commutes with all spectral projections of 4,
and, in particular, with the projection P. d

As a corollary to the above lemmas we have the follow-
ing proposition.

Proposition 1. Let A be an unbounded s.a. operator in a
Hilbert space H, and let M be a positive operator-valued
(POV) measure over the real line R'. Suppose that
A = JAM(dA), where the integral converges strongly on the
domain D(A) of 4 (see Refs. 2-4). Then for every feD (A4 ?)

AZfzf,z?M(dmf (2)

if and only if M is an orthogonal spectral measure, i.e., itis a
projection-valued measure over R'.

Proof: By the Naimark theorem?? for any POV measure
M there exists a Hilbert space H,, such that HC H,, and a
projection-valued measure E, over R’, such that E,, is the
dilation of M by means of the projection P: H,— H, i.e., for
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every ACR', M(A) = PEy(A)P. Defining B = JAE,(dA),
we have 4 = PBP. Applying Lemma 2, we obtain

M(A) =PE,(AYP=E (A)P=E(A),

for all Borel sets A in R’, where E is the orthogonal spectral
measure of the operator 4. Thus the POV measure M is
identical with the spectral measure of 4. 0

{il. THE MINIMAL SPREADING PRINCIPLE

Suppose now that A represents an unbounded observ-
able associated with a physical system 2. Thus we can as-
sume that 4 is an unbounded s.a. operator in a Hilbert space
H, affiliated with the von Neumann algebra ¥ generated by
bounded observables verifiable in the system =. This means
that all the spectral projections of 4 belong to the algebra .
Without loss of generality we can assume that % is a factor.
The states of the system are represented by probability mea-
sures on the lattice of orthogonal projections of %. By the
generalized Gleason theorem® such measures are given by
normal linear states on . If f&D(4), then the integral
SARAE, (dA)) is well defined for the probability measure
1 (Q) = (f|@f), where E, is the spectral measure of the
operator 4. Following this we say that a probability measure
4 over the lattice of projections U” of the algebra ¥ is affiliat-
ed with the domain of A if the integral

pd) = f Au(E, (dA) (3)

is convergent. Then we write unD(4). It is easy to see that
can be weakly approximated by the measures 2, feD(4). It
can be also shown that if unD(4,) and unD(A,), then
u(d, +4,) =p(4,) +p(4,).

Suppose now that unD(A4 %) for a given s.a. operator 4.
Define

02 (4) =p(4?) — p(4) 4)

Suppose further that there exists a POV measure M over the
real line, such that

A= f AM(dA), ()

where the integral converges strongly. Let us write formally
. 2
oy (A) = fﬂ 2u(M(dA)) — Ul,u(M(dzl))) .

Although we formulate the following results in full gen-
erality for any unD(A), it is enough to consider only mea-
sures p,, with feD(A4). Therefore, we omit the proofs of the
following lemmas, which in the case of the measures p, are
trivial,

Lemma 3: For every unD(A) the integral fAu{M(dA))
exists and is equal to u£(A4).

Lemma 4: If for two s.a. operators 4, and 4,, we have
A,<A,, then for every probability measure unD(A,)
MD{A,) the following inequality holds:

pA4)<p(4d,).

By Lemma 1 we have always

A 2<fi M (dA) = PB*P
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(see notation in Sec. IT). Thus, for every unD (A4 ?), we have
the inequalities of Jensen type: 0,,%(4)>0, and g,2(4)>0.
Moreover, by Lemmas 3 and 4, the spreading is positive,

5(A) = 0y *(A) — 0, (4) = f A%u(M(dR)) — (4 )50,

Thus we are ready to prove the following result.

Proposition 2: For a given observable 4 and for every
state unD(A4 ?) the infimum of the values of ¢, 2(4) for all
possible POV measures M is achieved on the spectral mea-
sure E, of A,i.e.,6(4) =0ifand only if M = E,.

Proof: If M = E,, then, obviously, 0,2(4) = 0,,%(4)
and §(4) =0.

Conversely, if §(4) = 0, then, in particular, for every
JfeD(A42) [we should assume D(4 2) = D(PB?P)]

0 = p;(PBP) — pu{(PBP)?) = u {PB*P — (PBP)?).

Since, by Lemma 1, (PBP)’KPB?P in D(4?)
ND(PBP), then PB?Pf= (PBP)*, for feD(4?).
[D(PB?P) isdensein H, cf. Ref. 2.] Hence, by Proposition 1,
it follows that M = E ,. g

IV. INCOMPATIBLE OBSERVABLES

Finally, we apply the results obtained above to couples
of observables which possess joint POV distributions.

Lemma 5: Two (not necessarily bounded) observables
A and C haveajoint POV probability distribution M over R?
[i.e, M is a POV measure over R such that M(R?) = 1,
A = SAM(dA XR'),and C = fyM(R"Xdy)], if and only if
there exists a Hilbert space H, and two strongly commuting
s.a. operators 4, and C, in H,, respectively, such that
A = PA,Pand C = PC,P, where P is the orthogonal projec-
tion P H,—» H.

Proof: By a straightforward extension of the Naimark
theorem? onto the case of R? there exists a Hilbert space H,
such that the POV measure M has a dilation to an orthogo-
nal spectral measure E, over R?, with respect to the projec-
tion P: H,— H. Since the marginal measures E,(R! X -) and
E,(-XR") are projection valued, then the operators
Ay: = fAE,(dA XR') and Cy: = (YE,(R' X dy) are s.a. op-
erators and mutually commuting. The result easily fol-
lows. 0

Proposition 3: Let A and C be two observables in the
system X which have a joint POV probability distribution M.
Suppose that for every state unD(4 ) of the system 3 we
have 0,*(4) = 0,,2(4). Then 4 and C commute.

Proof: By Lemma 5 there exists a Hilbert space Hy, such
that HC H,,, and 4 and C can be dilated to two commuting
operators 4, and C, in H,,. By Proposition 2, it follows from
the assumption that

E, =M(-xRY.
It is easy to see that since for all Borel sets A, A’CR?,
E(AXRDEN R XA") = E,(R'XAYEJ(AXRY),
and
E,(A) = E,(AXRY)P,

we have
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E,(A)feD(C) and CE,(A)f=E,(A)Cf

for every feD(C).

In particular, by the argument similar to that in Lemma
2 concerning analytic vectors, we get the commutation of
E, (A) with the spectral projections of the operator C. Thus
A and C commute. O

Proposition 3 is a stronger version of Proposition 6.1,
Chap. I1, in Ref. 3. There the commutativity is derived from
the minimal spreading of both observables. In the above
Proposition 3 one of the marginal distributions can be a gen-
uine POV measure, not necessarily a projection-valued one.

The above result can be interpreted as follows. In ortho-
dox quantum mechanics only observables corresponding to
mutually commuting self-adjoint operators are believed to
be jointly measurable. The Naimark theorem, as exploited in
Lemma 5, permits us to extend the notion of joint measurabi-
lity to so-called incompatible observables which correspond
to noncommuting s.a. operators. Thus, the joint measure-
ment of 4, and C,, described in Lemma 5 can be interpreted
as a joint measurement of 4 and C, with

M(dA XR') = PE,(dA XR")P,
M(R'xdy) = PE,(R' Xdy)P.

It follows that two incompatible observables are jointly
measurable whenever they have a joint POV probability dis-
tribution in the sense of Lemma 5. The question whether any
pair of incompatible observables allows a joint POV prob-
ability distribution, and, hence, is jointly measurable, is not
discussed here. For the position § and momentum p many
examples are well known.>%’

The notion of a POV measure makes it possible to give a
generalized definition of a quantum mechanical measure-
ment of incompatible observables. Our present results ex-
tend the results of Ref. 1 onto the general case of unbounded
observables, including position and momentum. It has been
demonstrated that it is possible to measure jointly these ob-
servables only when a mutual disturbance is allowed, affect-
ing the second (and higher) moments of both distributions.
As a corollary to this result we prove a stronger version of
Wigner’s theorem.®®

Corollary 1: There is no phase-space representation of
quantum mechanics which satisfies all of the following three
requirements: (i) the distribution function f(¢,p) on R? of a
state with the density operator p is the expectation value of a
s.a. operator M(q,p) (defining a POV measure over R?),i.e.,

flgp) =Tr[pM(gp)];
(ii) f(g,p) >0;
and (iii) either

f Aa.p)dp = (q,pq) (6)

or

f fg.p)dg = (p.pp).

1763 J. Math. Phys., Vol. 28, No. 8, August 1987

Proof: The impossibility of the phase-space representa-
tion is implied by Proposition 3, because the operators
4 = fqM(q,p)dq dp, and p = fpM(q,p)dg dp would com-
mute if the conditions (i)—(iii) were satisfied. O

Notice that in the previous version of Wigner's
theorem®?® both conditions in (iii) are required. A similar
result was obtained by Twareque Ali and Prugovecki'® un-
der the additional hypothesis of covariance under the Gali-
lean group.

Corollary 2: (iii)’ The operator which corresponds to a
phase-space function of the form 4A(g) + B(p), where 4(q)
and B(p) are arbitrary Borel functions, is 4(§) + B(p),
thus

A@) +B() = f{(A(q) +BE)IM g Ygdp (D)

implies both conditions in (iii), and hence, it is not a weaker
condition, as assumed in Ref. 9.

Proof: According to Proposition 1, in order to prove
(6), it is sufficient to take 4(g) = 1, ¢, and ¢°>, and B(p) =0
in (7). O
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Observables 4 and B satisfy the Heisenberg inequality if the product of their variances has a
positive Jower bound independent of the state of the system. In the Hilbert space formulation
of quantum mechanics it is a consequence of the Schwarz inequality that the Heisenberg-type
inequality Var(4,p)-Var(B,p) >}|(4¢ |Bp ) — (Bp |Ap )|* holds for any pair of observables 4
and B (represented as self-adjoint operators) and for any (vector) state (represented as a unit
vector). If inf{|(Ag |Bp ) — (Bp |Ap )| |pedom(4) Ndom(B)} #0 then 4 and B satisfy the
Heisenberg inequality. In the present paper the derivability of the Heisenberg-type inequality is
analyzed within the general theoretical frame of a sum logic. It is shown that any real-valued
non-negative function (4,a) —f(4,a) of observables 4 and of states a, which has a symmetry
property f{4 + B,a) + f(4 — B,a) = 2f(4,a) + 2f(B,a) with respect to observables, satisfies
the Heisenberg-type inequality f(4,a) -f(B,a) >}| A4 + B,a) — f(4,@) — f(B,x)|* for all
observables 4 and B and for all states a. The natural probabilistic realizations

fi(4,@) = Exp(4*a) and f,(4,a) = Var(4,a) of such functions are then analyzed. It turns
out that only with the complex extension of the theory can the Heisenberg inequality be
attained in the Hilbert space realization of the theory. This is used as an argument in favor of
the complex field as the scalar field of quantum mechanics.

1. INTRODUCTION

- Since the discovery of the fundamental “‘exchange rela-
tion” QP — PQ = (ih /2w)I and the uncertainty relation
AQ-AP>h /44 in the early days of quantum mechanics the
problems of interpretation and derivability of these relations
have constituted one of the central issues on the foundations
of the theory. In this paper we do not touch the problem of
interpretation of the uncertainty relation but we attempt to
investigate the question of under which conditions two ob-
servables satisfy the probabilistic uncertainty relation. As we
wish to avoid here the problems of interpretation we refer to
the uncertainty relation in the sequel more neutrally as the
Heisenberg inequality. We shall now introduce our problem
in more detail.

Heisenberg inequalities characterize pairs of observa-
bles for which the product of their variances has a positive
lower bound independent of the state of the system. The
existence of such pairs of observables is characteristic for
quantum systems. Observables 4 and B are said to satisfy the
Heisenberg ineguality if there is a positive number 4, say,
such that

Var(4,a) Var(B,a)>h (H

holds for any state a of the system. Here, e.g., Var(4,a)
denotes the variance of A in the state . If 4 and B satisfy the
Heisenberg inequality (1) then, in particular, they are un-
bounded, noncompatible, and even totally noncompatible,
These results do not depend on the structure of the Hilbert

space quantum mechanics but are valid also in more general .

theories. 3

In the Hilbert space quantum mechanics, where obser-
vables are represented as self-adjoint operators in a (com-
plex, separable) Hilbert space H and (pure) states as unit
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vectors (modulo phase factors) of H, one derives the in-
equality

Var(4,p) Var(B,@)>}|{dp |Bp ) — (Bp |d@) >,  (2)

which holds for any pair of observables 4 and B and for any
state geH in the intersection dom(4)Ndom(B) of the do-
mains of 4 and B.* Here (-|-) denotes the inner product of
H. The inequality (2) follows essentially from the Schwarz
inequality. The number }|{4gp |Bgp ) — (Bp |4p )|* gives
now one possible estimate for the lower bound of the product
Var(4,p) Var(B,p). Thus if

inf{|(4¢p |Bp ) — (Bp |Ag )| |pedom(4) Ndom(B)} 0,

then 4 and B satisfy the Heisenberg inequality. In particular,
if 4 and B are such that their commutator 4B — BA equals to
ascalar operator cl, |¢| #0, on a dense subspace D of H, then

inf{|(dg |B ) — (Bp |49 )| |peD} = c].

However, as DCdom(4B) Ndom(BA) might be contained
properly in dom(4)Ndom(B), |c| need not give a lower
bound for Var(4,p)-Var(B,), with gedom(4)
Ndom(B). This fact reflects the importance of the distinc-
tion between the Schridinger and Heisenberg couples (see
Garrison and Wong?; for examples demonstrating the above
conclusion see, e.g., Lahti,! Beltrametti and Cassinelli,? or
Lahti and Ylinen®). For Schrodinger couples the right-hand
side of (2) does give a positive lower bound leading thus to
the Heisenberg inequality (1).

We shall now turn to analyze the derivability of the Hei-
senberg-type inequality (2) in a general guantum logic
frame and discuss the relevance of the complex field to the
Heisenberg inequality (1).
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1. DERIVATION OF AN ABSTRACT HEISENBERG-TYPE
INEQUALITY

In this section E is a real vector space.

Definition 2.1: A quadratic functional on E is any func-
tion f: E— R that is non-negative [i.e., f{x) >0 for all x€E]
and has the property

Sx+p) +flx —y) =2f(x) +2f(y) forall x,yeE.
(3)

Theorem 2.2: Any quadratic functional £: E - R satisfies
the inequality
S )2 fx +y) —fix) —f()]? forall x,peE.

(4

Proof* Note first that f(0) =0, We shall now define
h(x,p): = }f(x +y) — fix) — f(y)) for all x,yeE, and note
that 4 is additive with respect to the first variable, ie.,
h{x +zp) = h(x,y) + h(z,y) for all x,y,zeE. As h is sym-
metric, 4 is also additive with respect to the second variable.
Now it easily follows that #(2x,y) = 2h(x,y), and, by induc-
tion, that 2(nx,y) = nh{(x,y) for any natural nomber neN.
We also have A( — nx,y) = — nh(x,p) and, with substitut-
ing nx =z, we obtain A ((1/n)x,y) = (1/n)h(x,y). Hence
h{gx,y) = gh(x,y) for any rational number ¢. Putting now
x = yin Eq. (3) of Definition 2.1 we obtain f(2x) = 4f(x).
By a similar argument as above we infer that f(gx) = ¢°f(x)
for any rational number g. Now for fixed x,yeE, x+#£0,
we define p: R-R with p(q) = flgx +p) = 2h(gx.y)
+flgx) +f(y). As p is non-negative we have
0<¢*f(x) + 2gh{x,p) + f(y) for all rational numbers ¢. Be-
ing a quadratic polynomial in g, p is a continuous function of
g for fixed x,yeE. Thus the inequality 0<g*f(x)
+ 2qh(x,y) + f(y) holds for all real numbers g. Hence the
discriminant must be nonpositive, S0 that
A (x,p) |2< S(x)f(y) for all x,peE. For x = O this is evident.
This completes the proof.

Remark 2.3: The proof of the theorem does not depend
on the choice of the number field of E. Thus it holds also
when E is a complex vector space.

Remark 2.4: If h: EXE >R is a symmetric [i.e., A{x,p)

= h(yx) for all x,ycE] bilinear (i.e., linear with respect to
both arguments) form, then the quadratic form
Sx): = h(x,x), xeE, associated with 4 is a quadratic func-
tional. Conversely, any quadratic functional fwhich is hemi-
continuous at O<E [i.e., lim,_ _ (4, x) = Ofor any sequence
(4, ) CR for which lim,, . A, = 0] defines a symmetric bi-
linear form A(xy): =Y flx+y) —f{x) —f(»), xy€E,
such that f(x) = h(x,x), xE, i.e., fis a quadratic form.’

The existence of a quadratic functional on a given vector
space E is by no means obvious. In some probabilistic appli-
cations the existence of such functionals is, however, crucial.
In the following we shall distinguish a class of quantum log-
ics on which quadratic functionals can be defined. To do that
we shall first recall the relevant notions and terminology. In
that we follow the presentation of Beltrametti and Cassin-
elli.?

Let (L,S) be a quantum logic, where L is an orthomo-
dular, o~orthocomplete partially ordered set and S is a suffi-
cient set of states (i.e., generalized probability measures) on
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L. Let B(R) denote the Borel o-algebra of the real line R. An
observable 4 is a o-homomorphism B(R) —L. Any pair
(4,a) of an observable 4 and a state a defines a (standard)
probability measure g?: B(R)-[0,1], X—ul(X)
: = a{4(X)). Let ¢ be the identity function on R. The integral
Srt du is denoted as Exp (4,) and it is called the expecta-
tion value of the observable 4 in the state «. Similarly,
Exp{4 %a) and Var(4,a) denote the second moment and
variance of 4 in the state @, respectively. An observable 4 is
said to be bounded if its spectrum (or support)
sp{4): = N{XeB(R)|X is closed, and 4(X) = e} is bound-
ed. (Here e denotes the unit element of L.) A quantum logic
(L,S) is said to be a sum logic, if the sum 4 + B of any two
bounded observables 4 and B exists and is unique; 4 + B is
then defined through the formula

Exp(4 + B,a): = Exp(4,a) + Exp(B,a)

For any A€R, A4 is an observable defined through Exp(44,
a) = A Exp(4,a) for all @eS. Thus, in a sum logic (L,S),
the set O of all bounded observables forms a real vector
space.

Definition 2.5: Let (L,S) be a sum logic and O the set of
bounded observables on it. (1.,S) is a quadratic logic if there
exists a real function fon the Cartesian product O XS such
that f(-,a) is a quadratic functional for any aeS.

In the next section we shall show that there are quadrat-
ic logics. Before going into that we obtain, as a corollary to
Theorem 2.2, that quadratic logics are distinguished in that
an abstract Heisenberg-type inequality holds true in them.

Corollary 2.6: Let (L,S) be a quadratic logic, and let f:
O X S— R be such a function that f{-,&) is a quadratic func-
tional for each a€S. The following abstract Heisenberg-type
inequality now holds true,

for all acS.

fd,@) f(Ba)>3f(4 + Ba) — fl4d,a) — f(Ba)|*
(5

for all 4,B€0 and for any a€S.

Let (L,S) be a quadratic logic. The interpretation of the
measure u defined by a pair (4,a) as the probability mea-
sure of the possible values of the observable 4 in the state
suggests that natural candidates for functions f: OXS—-R
for which the inequality (5) of Corollary 2.6 could hold were
among f,(4,a): = Exp{4,a), fi(4,a): = Exp(4 2a), and
folA,a): = Var(4,a). Clearly, £, is out of the question (as it
is linear with respect to both arguments). As concerns f; and
/> they both are non-negative functions. In general, however,
it is not known whether they would give rise to quadratic
functionals O — R. But as

fi{A — Exp(4,a),a) = Exp(4 %,a) — Exp(4,a)®
= Var(4,a) = f,{4,a)

for all 4€Q, a€S, one immediately recognizes that £, (-,a),
a€8, is a quadratic functional exactly when £, (-,a), <8, is
such. Assuming that this were the case we would obtain the
following two realizations of the abstract Heisenberg-type
inequality of Corollary 2.6:

Exp(47,a)-Exp(B*a)
>1|Exp((4 + B)*,a) — Exp(4 *,a) — Exp(B*,a)|?,
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Var(4,a) Var(B,a)
>}|Var(4 + B,a) — Var(4,a) — Var(B,a) %,
for all 4,B€0, aeS.

ll. HILBERT SPACE REALIZATION

We shall now demonstrate the existence of quadratic
logics by using the Hilbert space realization of the quantum
logic scheme of Sec. II. In that realization the basic sets L
and S are identified with the sets P(H) and T,(H);" of
(orthogonal) projection operators P and positive normal-
ized trace class operators T on the underlying Hilbert space
H. The identification of S with T, (H),* follows from Glea-
son’s theorem (see, e.g., Beltrametti and Cassinelli?), pro-
vided that the vector space dimension of H is at least 3. Here
we assume that this is the case. According to the spectral
theorem of self-adjoint operators, each observable E“:
B(R) - P(H) can now be identified with a self-adjoint oper-
ator 4 in H. Thus the set O of bounded observables can be
identified with the set L, (H) of bounded self-adjoint opera-
tors on H. Actually, the results of this section can be ex-
tended in a straightforward manner to unbounded observa-
bles, as well. But to avoid the complications with the
domains of the definitions of the self-adjoint operators we
consider here only bounded observables.

We consider again the functions f; and f, of Sec. II, now
defined on L, (H) XT,(H);*. As the operator product is
distributive over the operator sum, the functionals
A—f,(4,T) =Exp(A%T) =tr(TA?) and A—f,(A4,T)
=Var(4,T) =tr(TA*) —tr(TA)* are quadriatic on
L, (H) for any TeT, (H);" . Here, e.g., tr (74 ?) denotes the
trace of T4 ? (which is a trace class operator). This shows
that there are quadratic logics in the sense of Definition 2.5.

We formulate this result as a theorem,

Theorem 3.1: Let H be a Hilbert space whose dimension
is at least 3. The pair (P(H),T, (H)") is a quadratic logic.
The functionals A—Exp(4 %,T) and 4—Var(4,T) are qua-
dratic functionals on L, (H) for any T€T, (H);", and the
following Heisenberg-type inequalities hold true:

Exp(4 2, T)Exp(B%T)>}|Exp(4B + BA,T)?
= 1|Exp({4,B},|?, (6)

Var(4,T)-Var(B,T)
>}|Exp({4,B}T) — 2 Exp(4,T)-Exp(B, N[>,  (7)

for any 4,BeL, (H) and for all T€T, (H)," . Here {4,B} de-
note the anticommutator AB 4 BA of A and B.

We shall next ask whether the Heisenberg-type inequal-
ities (6) or (7) of Theorem 3.1 also serve as the Heisenberg
inequalities, i.e., whether the right-hand sides of these in-
equalities could give a nontrivial lower bound for some pairs
of observables. We shall test this with the canonically conju-
gate position and momentum observables Q and P, in the
sense of a Schridinger couple. We consider only one degree
of freedom so that we may take H to be the Lebesgue space
L,(R). Consider the Gaussian state 7 which is determined
by the function ¢ g (x) =cexp( — ax?), xR, with some
suitable constants ¢ and c¢. In this case Exp(P,Ts) =0
and Exp(QP,T ;)= — Exp(PQ,T¢) SO that
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Exp(QP + PQ,T ) = 0. Thus, in the important case of po-
sition and momentum observables Q and P

inf |Exp({Q,P}, 1|

TeT (H){

= inf |Exp({Q,P},7)
TeT (H) [+
— 2 Exp(Q,7) -Exp(P,T)| =0.
This shows that neither of the above inequalities (6) nor (7)
can serve as the Heisenberg inequality for the most impor-
tant pair of observables Q and P.

We shall now proceed with analyzing a complex exten-
sion of the function f;. Let us, however, first recall that the
set T, (H);* of all states is completely determined by the set
Ex(T, (H){") of pure states, i.e., the extreme elements of
T, (H);* which are exactly the one-dimensional projections
P[@], @ a unit vector, on H. If T is a mixed state, i.e., of the
form 3A,P[p;], with 0<A4,<1, 34, =1, ¢,eH, then
shows that also the values of the function f; are determined
by its values on L, (H) X Ex(T, (H));" . Hence, without any
loss in generality but with some saving in the degree of deno-
tational complexity, we may restrict to consider f; on
L, (H) X Ex(T, (H));*, only. Observe then that

fi4,P[9]) =Exp(4*P[p]) =tr(P[p]4?)
={p|d’p) = (4p|dp)
for any AeL, (H) and for any P[¢]€Ex(T, (H));" . This fact
proposes the following complex extension of the functions f:
fir L(H) XEx(T, (H) " }>C,
(4P [ D—F(4,P[p1): = (g |4p).
Clearly, for any Pl@leEx(T,(H);") the function
S1(+,Pl@]) restricted to L, (H) agrees with the function
f1C,Pl@]). Moreover, f, is real and it satisfies condition (3)
of Definition 2.1, as well. As Theorem 2.2 holds also for
complex vector spaces E (cf. Remark 2.3), the inequality
(5) of Corollary 2.6 will also be satisfied by this function. In
particular, for any two (bounded) observables 4 and B in
L, (H) we now have
APl ])-A(BPe])
=f4,Ple ) f1BP e N>Yfi(4 +iBPp])
—/(4Plg]) —F,UB.P @ I
= }|Exp(4B — BA,P[p )|
=3|Exp([4,B.P[p )%

where [A4,B] denotes the commutator AB — BA of A and B.
As Exp([4,B],T) is invariant under the scaling 44
— Exp(4,T) and B—B — Exp(B,T) we may rewrite the
above inequality as the Heisenberg-type inequality

Var(4,T)-Var(B,T) >}[Exp([4,B 1,1 |?, (8)

which holds for any pair of (bounded) observaplw Aand B
and for any state 7. Thus the complex extension f, of f, allows
one to derive the usual Heisenberg-type inequality (8).
Though the inequality (8) is standard and well known we
wish to emphasize some important features that are revealed
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by the above derivation. First of all, the basic inequality (5)
of Corollary 2.6 holds true in a very general setting for any
quadratic functional. Second, the natural probabilistic real-
ization f,(A,T) = Exp(4 %, T) of such a functional does not
readily lead to the Heisenberg-type inequality. Only with
extending the real vector space L, (H) of observables to the
complex space L(H) and the real function f; to the complex
one f,, one is able to derive the inequality (8). This clearly
shows that the complex field is very essential for the deriva-
bility of the Heisenberg inequality (at least in the Hilbert
space framework ). This is remarkable as the problem of the
choice of the scalar field of quantum mechanics has become
very relevant, anew.® The Heisenberg inequality may thus
serve as an argument for the choice of the complex field. In
the following section we shall study the derivability of the
Heisenberg-type inequality within two possible complex ex-
tensions of the abstract quantum logic framework.

IV. COMPLEX EXTENSIONS

In this section we shall investigate two possible complex
extensions of an abstract quadratic logic (L,S) which may
allow one to derive an abstract Heisenberg inequality.

Let (L,S) be a sum logic, and O the real vector space of
bounded observables on it. We consider the function £, (4,
a): = Exp(4 %) on O X S and we assume that the function-
als A—f, (4,a), a8, are quadratic. We shall now ex/t\end the
real vector space O to the complex one O:= {4

-+ iB |A,BeO}, where / is the imaginary unit. Let ® be a
bilinear O-valued mapping on the Cartesian product O X O
and assume that it has the property ®(4,b) = ®(a,B) =0
for any constant observables a,beR [i.e., observables
B(R) —L whose spectra are singletons {a} and {b}]. We
define the following function f;:

Fild + iBa): =fi(4,a) +f,(Ba) + fo(®(4,B) )

for all 4,B€Q, and for any aeS. Clearly, fl is a real-valued
function on O X S, whose restriction to O X S equals f;. Here
/o denotes again the expectation functional on OXS, i.e.,
Jol®(4,B),a) = Exp(P(4,B),a). Due to the linearity of £
and due to the bilinearity of & we obtain

Fid +iBa) + £,(4 — iBya) = 2 (4,@) + 2, (Ba)

forall 4,B€0, a€S. Assuming thatjAf1 isalso non-negative, we
see that £, (-,a) is a quadratic functional on O for any a€S.
According to the complex version of Theorem 2.2 we thus
have

Fida) Fi(iBa)>Mfi (A + iBa) — fi(4d,a) —f(iBa)|?
for all A4,B€O, aeS. But as f,(d,a) =f,(4,a) and

}”, (iB,a) = fi(B,a) for all 4,B€0, aeS, we may rewrite this
inequality in the form

fi(d,a) f,(B,a)>1|Exp(P(4,B),a)’

for all 4,B€0, and for all a€S. This form of the abstract
Heisenberg-type inequality, which was obtained applying
the complex extension f; of f}, suggests that the observable
®(A4,B)c0 could be interpreted as a kind of commutator of
the observables 4 and B. We note that the “commutator”
®(A4,B) of A and B has the usual scaling invariance property
Exp(P(4 — Exp(4,2),B — Exp(B,a))a) = Exp(®(4,B),a)
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for any 4,B<0, a€S. Hence the above inequality can be re-
written once more; now in terms of the variances

Var(4,a) Var(B,a) >1|Exp(®(4,B).a)|* 9)

for all 4,B€0, acS. This is simply an abstract form of the
familiar Heisenberg-type inequality of the Hilbert space for-
mulation of quantum mechanics, as given, e.g., in inequality
(8) of Sec. III.

Let (L,S) be a sum logic, and assume that the function-
als A—f;(4,a), a€S, are quadratic on O. It is an open ques-
tion which kind of structural properties this assumption im-
plies on (L,S). We do know only that it holds true in the
Hilbert space realization of the sum logic (L,S). Again, in
the Hilbert space model of (L,S) the generalized commuta-
tor map P has the standard solution ®(4,B) =i[A4,B]

=i(AB — BA), for A,BcL (H). The problem of which

kind of properties a quadratic logic (L,S) has to possess in
order for a nontrivial (i.e., nonzero) commutator map ®:
00 -0 to be constructed on it is another open problem.
In general, it is known only that if (L,S) admits such a non-
trivial ® and if the Heisenberg-type inequality (9) turns out
to be a Heisenberg inequality for some pair of observables 4
and B, i.e., inf{|Exp(®(4,B),a)| |acS} #0 for 4 and B, then
these observables are totally noncommutative, and, a for-
tiori, L is strongly non-Boolean.?

There is another way of approaching the problem of
generalizing the commutation relation in such a way that we
obtain an abstract form of the Heisenberg inequality. Name-
ly, we can postulate the existence of a pair of observables (a
canonical pair of observables) in such a way that the right-
hand side of inequality (5) in Corollary 2.6 becomes inde-
pendent of 4 and B and has a lower bound for all states. Let
O be the complex vector space defined by the set O of
(bounded) observables, and let S denote the complex vector
space generated by the (convex) set of state S.° It then turns
out that this is possible under the assumption that there is a
vector space X and a map g: XS such that the functional
Sf(d.x): = f(4,g(x)) is quadratic not only with respect to 4
but also with respect to x. We then have the following
theorem. A

Theorem 4.1: Let £ O X X—R be a non-negative func-
tional quadratic with respect to4 and x. Assume that there is
a pair of observables 4,B<0 such that

F([4,B),cx) =f([A,B],x) forall|c|=1 and xeX.
[Here f([4,B],x) denotes }(f(4 +Bx) —f(4x)
— f(B,x)). A similar notation will be used with respect to x,

as well. ] If, moreover,}( [4,B],x) is real-hemicontinuous at
0 with respect to x, then

(xp): = HAAB LIpx]) + (14,8 1, [pixD}
defines an inner product on X and ||x||> = f([4,B],x) is a

norm on X. In this case inequality (5) of Corollary 2.6 takes
the following form:

Fax) fBx)> x| (10)
The proof of this theorem can be found in Maczynski. ' If we
now interpret f(A4,x) as the second moment of 4 in the state

represented by x (which is equal to the variation of central-
ized observables 4 and B, i.e., observables with zero expecta-
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tion in the state represented by x ), then inequality (10) takes
the form

Var(4,x)-Var(B,x)>||x||*,

where Var(4,x) is the variance of 4 in the state represented
by x. For states represented by normalized vectors ||x|| = 1
the above inequality takes the form

Var(4,x) Var(Bx)>1,

which corresponds to the Heisenberg inequality.

There arises a natural question of whether there exists a
pair of observables satisfying the assumption of the above
theorem. It turns out that in the Hilbert space model
(P(H),T, (H) ) of the sum logic (L,S) there is a realiza-
tion of Theorem 4.1. In that model the set O is identified with
the set L(H) of bounded operators on H, and the set S is
identified with the set T(H) of trace class operators on H.
Let the vector space X be the underlying Hilbert space H,
and consider the function g: H-T(H), p—-g(¢) = Plg].
Let f(4, ) = f(4,P[@]): = (Ap |Ap ). Clearly, fis a real-
valued non-negative function on L(H) X H, and it is qua-
dratic with respect to both variables. Consider now 4 = iQ
and B = P, where Q and P are any two self-adjoint operators
in H such that QP — PQ = il holds in a dense subspace D of
H. Due to the properties of the inner product (- |-) of H, the
function f({4,B],-) has the properties assumed in Theorem
4.1. After a straightforward calculation one obtains
f[4,B], [p,¥]) +if([4,B], [@,i¥]) =2(¥|p) for any
@,¥eD. This shows that the inner product of H implied by
Theorem 4.1 equals the Hilbert space inner product (-|-) of
H. Moreover, for any unit vector gD we now have

Var(Q,p) Var(Pp)>1.

We conclude that the usual Hilbert space realization of a
sum logic gives a model of Theorem 4.1.

It is an open problem whether there exists a pair of ca-
nonical observables on a general quantum logic and what is
implied by such an existence. It is quite probable that this is
so strong a requirement that it already implies the usual Hil-
bert space formulation of quantum mechanics. In any case
we see from the above consideration that to obtain a solution
even in the Hilbert space we have to extend the space of
observables to a complex vector space. There arises the ques-
tion of why we consider the assumption about a quadratic
functional (which implies the Heisenberg-type inequality
for this functional) as superior to the inequality itself. The
reason is that the quadracity condition is expressed as an
equational axiom, and it is well known that a mathematical
theory involving equational axioms only is better than a the-
ory involving inequalities (for equational theories there are
very general theorems characterizing the properties of mod-
els of these theories). We also hope that some physical moti-
vation for the quadracity of the relevant functionals will be
found. Anyway, to obtain the Heisenberg inequality it is not
enough to consider only linear functionals on the vector
space of observables in a sum logic. One has to bring into
play a quadratic functional as well.

V. CONCLUSIONS

The problem of the choice of the number field for the
mathematical apparatus of quantum mechanics has been
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considered by many authors. It is known that the identifica-
tion of the division ring of the Piron-McLaren representa-
tion theorem with the real field R, or with the complex field
C, or with the quaternion division ring Q is not a conse-
quence of the lattice structure of L but it needs extra assump-
tions. These assumptions aHow one to infer that the division
is an extension of the real field R,'"'? but the selection of C in
preference to R is motivated by mathematical simplicity.>
Some more exotic fields like, e.g., p-adic numbers have been
found out to be incompatible with the required lattice struc-
ture,'® but as indicated by Beltrametti® the problem of giving
convincing physical motivation for the choice of the com-
plex field is still open.

In this paper the superiority of the complex field C over
the real field R was demonstrated by showing that the Hei-
senberg inequality can be derived only in the complex field
framework. If we attempt to derive this inequality from an
equational axiom, we can do this only after extending the
real vector space of observables to a complex one. We note
that there are examples of quantum logics with a sufficient
set of states satisfying the Heisenberg inequality.! However,
in such cases the inequality is not derived but it is postulated
as an axiom. Although the complex numbers do not appear
directly in the Heisenberg inequality, we see that they are
necessary for the derivation of it; by applying real numbers
only a derivation of the Heisenberg inequality cannot be giv-
en. This is a similar situation as with the Cardano formulas
for the solution of the cubic equation; even when all three
roots are real, to calculate them from the real coefficients of
the equation by means of Cardano’s formulas we have to
pass through the complex numbers. Moreover, it is known
by a formal proof that without complex numbers the deriva-
tion is not possible. We hope that this analogy shows the
meaning of our result. We do not claim that the complex
numbers are indispensable in quantum mechanics, but we
have shown that if one wants to derive the mathematical
formalism of quantum mechanics with the Heisenberg in-
equality within the axiomatic frame of quantum logic using
only equational axioms one has to pass through the complex
numbers. We hope that these results may contribute towards
a final solution of the problem of the number field in quan-
tum mechanics.
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The spectral theory of uniformly elliptic operators A under perturbations ¥ giving rise to
operators of the form H, = A4 + V(x) on a bounded or unbounded region, such as
Schrodinger operators, are considered. Suppose that || V||, is constrained, but ¥ is otherwise
unspecified. The theory of the potentials J that maximize or minimize the eigenvalues of Hy is
presented. The optimizing potentials are typically determined by equations of the form

— Au + W(x)u = + cu® + Au. The optimization of eigenvalues also turns out to be related
to the determination of the best constants in Sobolev’s inequality, and, in its one-dimensional
simplification, to a classical oscillator problem with “instanton” properties.

1. INTRODUCTION

In an earlier paper,' one of us analyzed the following
problem (the notation has been changed slightly): Let  be
a bounded domain in R” and consider the eigenvalue prob-
lem for various self-adjoint realizations of

= —A4+V(x). (L.1)

Suppose that the potential ¥V is constrained so that
IV ||, <M < oo for some p,1<p< o . The earlier paper char-
acterized the potentials ¥ subject to certain constraints of
this sort that maximize the lowest eigenvalue of H,,. The
predominant concern was the case p = 1, where the maxi-
mizers turn out to be multiples of characteristic functions,
but it was noted that for 1 <p < « one was led to the nonlin-
ear equation

AV@=1D72 = (Y Ay =12
or, with

u=Ve-Y2a=0p+1)/(p-1),

—Autu*=Au.

The key step was the realization that a necessary condition
for ¥ to be an extremizer of the functional ¥ - A, with A a
particular eigenvalue of H,, is that V and the associated
eigenfunction u at extremum be related algebraically via

w=clViF-1. (1.3)

The case p = oo is trivial and will henceforth be excluded. A
number of questions are related to this maximizing problem
either in spirit or in method. For instance, it is just as natural
to ask how one could minimize an eigenvalue. Putting aside
for the moment general considerations such as the existence
of an extremum, the analysis of which needs somewhat dif-
ferent ideas from those of Ref. 1, condition (1.3) turns out to
characterize minimizers as well as maximizers. Once (1.3) is
derived and inserted into the variational characterization for
eigenvalues, the minimizing problem becomes closely analo-
gous to that of finding the best constant in Sobolev’s inequal-
ity, a subject that has been studied extensively for its interest
in the theory of elliptic partial differential equations (see

(1.2)
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Refs. 2-7). In particular, much of our work in Sec. III is
directly inspired by the work of Glaser ef al. and Lieb and
Thirring (cf. Refs. 2, 3, and 6) who worked on these best
constants and optimal bounds for the number of eigenvalues
and their moments. Equations like (1.2) also arise in other
contexts, such as the Yamabe problem of geometry, and
have been reviewed by Lions.® More recently there has been
a paper by Brézis and Nirenberg® bringing out more fully the
connection between the general theory of equations like
(1.2) and the variational techniques developed for the best
constants studies.

In addition, minimization of eigenvalues arises in the
mathematical physics of bulk matter and in quantum scat-
tering theory, especially as a tool to estimate the number of
bound states, i.e., negative eigenvalues of H, on domains
that may be infinite. So long as p is sufficiently large that Vis
relatively compact, the essential spectrum of H, is positive,
while its discrete spectrum may have negative eigenvalues
bounded from below by a determinate constant, so it makes
sense to speak of minimizing the eigenvalues. We have dis-
covered that there is a body of literature on the minimizing
problem on the half-line dating from papers of Everitt,'°
Eastham,'! and Evans,'? who produced lower bounds for the
lowest eigenvalue, and culminating with the work of Vel-
ing,”® who obtained the optimal one-dimensional lower
bounds by realizing the connection with Sobolev’s inequality
and drawing on that literature.

We also wish to remark that in the case of one-dimen-
sional, finite intervals there were several independent solu-
tions (Refs. 14-17) of some maximizing problems of the
type analyzed in Ref. 1. Some of them!*' used inequalities
of the sort that are exploited for optimizing Sobolev’s in-
equality. As a final historical note, the earliest analysis of
maximal and minimal eigenvalues of the vibrating string
problem of which we are aware is that of Krein, '® who found
that the optimal bounded densities constrained to have a
certain L ! norm were multiples of characteristic functions,
reminiscent of a result of Ref. 1. Although some connections
have been noted among all these related optimization prob-
lems, it seems that they have not been as fully recognized and
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exploited as they might have been. We are grateful to Kaper,
Pranger, and Zettl for bringing some of these references to
our attention.

In Sec. II we extend the analysis of Ref. 1 in certain
ways, and discuss existence, uniqueness, and other proper-
ties of optimizing potentials and their associated nonlinear
partial differential equations. In the last section we specialize
to the case of one dimension, where the nonlinear equation
can be integrated and interpreted as a problem in classical
dynamics. We shall show among other things that the opti-
mizers of the eigenvalues of H,, with different boundary con-
ditions on a finite interval correspond to different phases of
the same classical oscillator orbits. The minimizing poten-
tials for infinite intervals are related to classical orbits with
“instanton” properties, and in special cases they become fa-
miliar solitons.

1. OPTIMIZING POTENTIALS IN v DIMENSIONS

In this section we will consider certain elliptic linear
differential operators acting on a v-dimensional Riemannian
manifold Q, for which the Rellich-Kondrashov embedding
theorem'*?° for the Sobolev spaces W &7 holds; in particular
) can be a bounded or unbounded domain in R* or a smooth
compact manifold. The operators consist of potentials ¥ (x)
added to

A= —% Dia;(x)D; + W(x) =4, + W(x), (2.1)
L4

where 4 is uniformly elliptic, i.e., @; = a; are absolutely
continuous real functions, and for each x the eigenvalues of
the matrix a; lie between (or equal) numbers a and b,
0 <a <b < . We also assume that they have bounded gra-
dients. When W, which should be thought of as a fixed back-
ground potential, is relatively form compact (for instance, if
WeL? p>v/2,v>1,0rp>1, when v = 1, cf. Refs. 21 and
22), the operator 4 is semibounded and self-adjoint with
quadratic-form domain W ;>*C L ?({}), i.e., the operator is
closed from the core of smooth functions of compact sup-
port. This corresponds to Dirichlet boundary conditions,
but in Sec. III on the one-dimensional case, we shall also
impose different boundary conditions. It is known that the
ground-state eigenvalue of 4 is nondegenerate with an eigen-
function that is positive a.e., when it exists—for instance
when Q is compact.?® (More general operator-theoretic as-
sumptions guaranteeing this property are discussed by Reed
and Simon?! and Davies?®.) If ) is bounded, 4 has a com-
pact resolvent. For the necessary facts about elliptic opera-
tors we refer to Gilbarg and Trudinger®® and for self-adjoint-
ness to Reed and Simon,?! and we shall follow notation
found in those references as far as possible. We shall also
occasionally specialize to the most important case,
A= —A

To the operator 4 will be added a real-valued function
V(x), called the potential, which satisfies L ? constraints,
and we will consider the questions of existence, uniqueness,
and characterization of the potentials that maximize or
minimize a given eigenvalue, extending the results of Ref. 1
in various ways. If ¥ is also relatively form compact, then
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A + V hasthe same general properties as 4. In fact, the same
properties hold if the positive part of Fis assumed merely L *,
except that the quadratic-form domain may be smaller.

For the case of the Laplacian on a bounded () and either
p =1 or p sufficiently large, Ref. 1 contained an existence
proof for a potential V', maximizing the lowest eigenvalue of
H,,. The following is a slight generalization.

Theorem IL.1: Let Q CR" be open and bounded and, for
p>1, let S be a closed, convex, and bounded subset of
L?(Q), with V>0 for VeS. Denote the lowest eigenvalue of
A + Vby

E(WV) =inf{(£,(4 + V) f)| feW 2 (Q), |f|l, =1} .(2.2)

Then there exists a unique potential V', in .S that maximizes
E).

Proof: (1) Any maximizing sequence of ¥’s in S con-
tains a weakly convergent subsequence (V,). Let V, -V,
weakly. By a theorem of Mazur (cf. Ref. 24, p. 120), closed
and convex sets are weakly closed, and so V_ €S.

(2) For €0, there exists ¢eC =, ||¢||, = 1, such that

EWV )24+ V,)d)—€;

hence, since V,, — V' weakly,

€+ EV,)>6,(4+V,)9)

= lim (¢,(4 + V,)¢)> lim sup E(V,)

by the definition of E(V,). It then follows that E(V )
=E, =sup {E(V)|VeS}.

(3) Uniqueness of V', follows from the strict concavity
of E(V): It is easy to see that E(-) is concave.

Suppose now that there were two maximizing potentials
V,and ¥,. By concavity their average, denoted V5, must also
be a maximizer. Denoting the corresponding normalized ei-
genfunctions by f,, f,, and f;, we observe that unless

fl Zfz :ft%’
E, = E(Vy) =I1(f3,V3) =3 f5,V) + (£, V2))

[here I(f,V)=(/(4 + V) f).] Thus f, = f, = f; and from
the Schrodinger equations for f; and f, we see that
V. fi=V,f; ae. Since ground state eigenfunctions may be
chosen to be positive in £}, it follows that V', = V, a.e., and
we are done. ]

For additional discussion of the case p = 1, see Ref. 1.
The method of proof of Theorem II. 1 does not extend to
other eigenvalues or to minimization even of the ground
state. Theorems I1.2-11.4, which use straightforward com-
pactness arguments, are a useful replacement. The details
are somewhat different for low dimensions (v<3), because
quadratic-form compactness gets one farther than operator
compactness. We shall make use of the well-known Rellich—
Kondrashov embedding theorem.'®?° The space W 5# () is
compactly embedded in L~ ~*(Q) for kp < v, and in
C™(Q) for 0<m <k — v/p.

Theorem II.2: Let v=1, 2, or 3, and suppose  is
bounded. Let V' vary in a closed, convex, bounded set S (a)
within the bounded Borel measures, if v = 1; (b) in L*(Q)
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forsomep > 1,ifv = 2; (¢) in L?(Q) forsomep > },if v = 3.
Let the background potential # liein the same class. For any
fixed k, denote the kth eigenvalue of H, by E(V). Then
E(¥) attains its maximum and minimum in §.

Proof: The proof works by throwing the emphasis not on
V but on the corresponding eigenfunction, and using stan-
dard embedding theorems. The set .S consists of relatively
form-bounded potentials (with arbitrarily small relative
bound independent of ¥), and the min-max principle and
the Kato-Rellich theorem show that E(¥) is bounded above
and below uniformly on S. Let E_ denote the infimum or
supremum of E(V) on S. Let ¥, be an optimizing sequence
within S, and for convenience denote the associated eigen-
value and eigenfunction E, and g,,, ||g, ||, = 1. By passing to
a subsequence we may assume that E, - E, and that V,
converges weakly to a potential we denote ¥_€&S. For any
constant C> E_, and n large,

C> (gn’(Al + W+ Vn )gn) > (l _'6)(gn’Algn) "“D,

for some (arbitrarily small) 0 <€ < 1 and some D, indepen-
dent of V,, by the uniform relative boundedness of such po-
tentials.>"?? The Garding inequality then implies that there
is a uniform bound on || Vg, ||, sog,, is abounded sequencein
W 2. We claim that it has a uniformly convergent subse-
quence by Rellich-Kondrashov. This is immediate when
v=1Iv=2welearnthatg, isboundedin L? all p < w0,
and if v =3 we attain L?, all p < 6. Thus, with the Holder
inequality, ¥, g, is bounded in L? for somep>1(v=2) or
some p >$. With the assumptions on 4, the same is true of
Ag, (cf. Ref. 20, Theorem 8.12, p. 186; here we must require
that the boundary of ) is of class C ?). This makes g, bound-
ed in W2* for some p > 1 when v = 2, allowing us to apply
the compact embedding to get the desired conclusion. If
v = 3, we are as yet only guaranteed W3%*+<CL%*¢, and
afew more iterations of this argument are needed toput g, in
a sufficiently highly indexed Sobolev space to have a uni-
formly convergent subsequence. We call the uniform limit
g, (forv=1,2, or 3). It is a nonvanishing element of the
quadratic-form domain of 4.
If g,, converges uniformly and V,, — E, weakly,

(Vn —En)gn—’(V* _E*)g*

weakly, from which it is easy to see that in the distributional
sense

(4, +W+V, —E,)g,
=1lim (4,+ W+V, —E,)g, =0. »

A more abstract existence theorem makes use either of rela-
tive operator compactness or of ultracontractivity, i.e., the
property that for some abstract operator B, exp( — tB) is
bounded from L >to L* for all > 0. A family of operators is
uniformly ultracontractive if there is a uniform bound for
some t>0. This property applies, for example, to
B+ V= — A+ V acting on a bounded, smooth domain,
where V is positive and ranges over some set in L', since
exp( — t(B + ¥)) has a kernel dominated pointwise by that
of exp(tA), as can be seen from the product formula.>"** For
recent ultracontractive technology, see Refs. 22 and 26.
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Theorem I1.3: Let B be a positive self-adjoint operator
with compact resolventon L 2, and let ¥ range over a convex,
bounded, and closed set SCL 2. For any fixed k, we denote
the k th lowest eigenvalue of B + ¥'by E(V). Assume either
that (a) each V&S is relatively bounded with respect to B
with bound less than 1, uniformly in S; or (b) B 4+ Vis self-
adjoint, bounded below by a constant uniform in §, and uni-
formly ultracontractive for VeS. Then the maximum and
minimum of E(¥) are both attained in the set S.

Proof* As before, let ¥, be a minimizing sequence, with
associated eigenvalues E, and L >-normalized eigenfunc-
tions g,. We pass to a subsequence so that E, - E, and
Vv, -V, weakly without further ado. The ultracontractive
property implies a uniform bound of the form |g, (x)| <M,
so V,g, is bounded in L ? under either assumption (a) or
(b). The eigenvalue equation can be written

g, = —B+i"YV,—E,—ig,. 2.3)

Since (V,, — E, — i)g, isbounded in L *and B has compact
resolvent, g, has a strong limit point, which we call g, . As
vV, V, weakly and g, g, strongly, we have for ¢eC >

( Vn7gn¢) - ( V* 9g*¢)
implying
v.8,-V,.8, weakly,

as ||V, 8, || <const. This identifies the weak limit of a subse-
quence of (V, — E, — i)g,. Passing to this limit, (2.3) be-
comes

g, =— B+ YV, —E, —Dg,, (2.4)
so g, is an eigenfunction of B 4 V, with eigenvalue £, . B

Corollary IL4: Let Q be bounded and have sufficiently
smooth boundary (or no boundary), 4 = — A + W where
WeL?,andS ={feL”: | f|l, <M} withp>v/2,v>2 (or§
is either this with p > 1 or the set of Borel measures of total
mass <M if v =1). Let E(V) denote the k th lowest eigen-
value of 4 + V for fixed k. Then E(¥) attains its minimum
in.S.

Remarks about Theorems 11.2-11.4: (1) The eigenval-
ues may be numbered by the min-max principle, counting
multiplicities. Corollary I1.4 for v> 3 results from a stan-
dard estimate of relative boundedness given as a problem in
Reed and Simon,?* Vol. IV, p. 369 (the infinite domain there
is inessential).

(2) The technique of proof often extends to show the
existence of optimizers of various other spectral properties,
such as gaps between eigenvalues®’ and resonance widths.?®
The one-dimensional result holds for all the boundary condi-
tions considered in Sec. IIL

(3) It is not certain how far these theorems could be
extended. They certainly do not extend unchanged to dimen-
sion >4 and the critical value p = v/2, since by arguments
like those leading to (2.11) below such an extension would
imply existence of positive solutions of

—Au=u*+Au

for @ = (v + 2)/(v — 2) and arbitrary negative 1. Yet, as
noted by Brézis and Nirenberg,® this is not possible (at least
for smooth star-shaped domains) as a consequence of the
Pohozaev identity. We conjecture that ultracontractive esti-
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mates might be an efficient way to study the critical values in
this problem and the associated theory of nonlinear differen-
tial equations.

(4) As one would suspect from the alacrity with which
we pass to subsequences in the proofs, there is no guarantee
of uniqueness. In fact, some optimizing potentials are not
unique (see Sec. IIT and Ref. 1).

Some of the natural sets of potentials over which one
might wish to optimize are not convex, such as || V||, = M.
Since, however, it is easy to see from the min—max principle
that any maximizer or minimizer over the set || V||, <M au-
tomatically has || V||, = M, the existence Theorems I1.3 and
I1.4 are still useful. Without loss of generality, maximizers or
minimizers over these sets may be assumed ab initio to be
non-negative and nonpositive, respectively. Hence one
might also be led to consider playing the misére version of
this game, viz., fix ||V, =M with V>0 (resp. <0) and
attempt to minimize (resp. maximize). It turns out that
there will be no minimizer under these circumstances, for
the infimum of the ground state eigenvalue for 4 on a bound-
ed Q2 with p> 1, for instance, can be determined to be E(0),
by consideration of the sequence

V,=Mn"%y, , (2.5)

where |B,| = 1/n, B, ., CB, CQ. Since ¥, -~0in L', the
Rayleigh-Ritz inequality with the (bounded) ground-state
eigenfunction of 4 as the trial function shows that

E(0) <E(V,) <E(0) + const||V,||,~»E(0) .

Since ||V]|, >0 implies the strict inequality E(V) > E(0),
Theorem I1.3 in fact shows that any minimizing sequence in
the set considered tends weakly to 0, and thus leaves the
original set. Similar but more detailed calculations show the
same for p = 1 and for maximizing sequences of negative
potentials (see Ref. 29).

In Ref. 1, uniqueness was proved for maximizers of the
ground-state eigenvalue in the case p = 1, and one-dimen-
sional examples were given showing that maximizers of
higher eigenvalues are not unique in general. In Sec. III we
arrive at some uniqueness only as a consequence of charac-
terizing the optimizers. The uniqueness theorem for maxi-
mizers of the ground-state eigenvalue, however, can easily be
extended to higher p.

Observe that minimizing potentials cannot be unique
when ) = R" or any other translation-invariant domain,
since translations of the potential leave the spectrum invar-
iant.

Now that we have established the existence of at least
some extrema, it remains to characterize them, along the
lines of Ref. 1. Let

S={v: V|,<M} (2.6)

(without loss of generality we could replace this with
S={||V|, =M}), and assume 1<p< . To spell out
more of the argument sketched in Ref. 1, consider perturba-
tions of the form

KYr, (Xx) KYr,(x)
S, Ve l? ™ ldx fT2|V*|"“dx’

where T, and T, lie in the interior of supp(¥, ), and where

V,-V, +
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the coefficients of the characteristic functions y,, and yr,
have been chosen so that the L norm of the perturbed po-
tential equals M to first order in «. Regular perturbation
theory applies,*' so if ¥, is an optimizer for which the opti-
mized eigenvalue is nondegenerate, and the eigenvalue asso-
ciated with the perturbed potential is denoted e(x), then

0= _ _
de S|V PP tdx g |V, P T dx

and leads to the conclusion that the derivative of the eigen-
value by x can only be O for all admissible sets 7', , if the
optimizing potential and its associated eigenfunction u, are
related algebraically via

2 2
Sruy dx Sty dx

ul =const |V, [P~ ',

2.7)

a.e. onsupp( ¥, ). Since this depends only on first-order per-
turbation theory, which states that the derivative of the
eigenvalue is the expectation value of the perturbation in the
unperturbed state, the argument of Ref. 1 still applies when
— Ais replaced by 4 or an even more general operator. It is
also just as valid for minimizers as for maximizers, and is not
sensitive to whether (2 is finite. More precisely stated: (2.7)
is a necessary condition for any isolated, nondegenerate
eigenvalue £, to be either a maximum or a minimum over
the set S. Unlike the case of predominant interest in Ref. 1,
i.e, p = 1, the support of V' is not a proper subset of (2.

Proposition IL.5: Let ¥V, be a maximizing or minimizing
potential for an L? constraint (p > 1), with an associated
eigenvalue that is nondegenerate, and let S be as in (2.6).
Assume any one of the following: (a) v>1, p> 1, and the
eigenvalue is the ground state; or (b) 4 + V,_ has the unique
continuation property.

Then the support of ¥, contains all of (2.

Remarks: Support is defined as for generalized func-
tions, i.e., as the support of the measure ¥V dx, not as for
classical functions. Particular conditions guaranteeing the
unique continuation property (b) are*®*! (c)v =1, ¥, dxis
a bounded measure; and (d) v>2, p>v/2,and 4 = — A,

Proof: The technique of proof resembles the technique
used for (2.7). Suppose that the lemma is false, and let x lie
outside the support of ¥, . Let T denote a small ball centered
at x. Since the support is closed, a sufficiently small T lies
outside it. Consider the perturbation

and let u, and e(«) denote the normalized eigenfunction for
¥V, and the eigenvalue of the perturbed potential, respective-
ly. The formula of first-order perturbation theory then reads

e (0) = (ug,xriy,) -
The norm of the perturbed potentialin (2.8) isM + O(«”)
= M + o(x), so a necessary condition for ¥, tobean extre-
mizer is that ¢’ (0) = O for all sufficiently small 7. This im-
plies that , = 0 a.e. outside supp(¥,, ). By hypothesis this
is a set of positive measure, and thus there is a contradiction
with either the positivity of the ground state (case a) or the
unique continuation property. ]

When combined with (2.7), this proof also yields the
following proposition.

Propositon I11.6: Let ¥V be a maximizing or minimizing
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potential with an associated eigenvalue that is nondegener-
ate, and let S be as‘in (2.6), with p> 1. Then (2.7), i.e,,

ul = const|V, P!,

holds throughout 2. Since (2.7) gives us a purely algebraic
relationship between the optimizing potentials and their as-
sociated eigenfunctions, it can be substituted into the eigen-
value equation to yield a characterization of the optimizers.
Note that since the eigenvalue equation is linear in u,, its
normalization can be chosen so that the constant in (2.7) is
1. Then we find that any optimizer (with a nondegenerate
optimized eigenvalue) necessarily satisfies the generaliza-
tion of Eq. (1.2),

Au + |u|*sgn(u) = Eu, 2.9

where E is the associated eigenvalue,a = (p + 1)/(p = 1),
and the equation has been written in terms of the associated
eigenfunction, dropping the *. The upper sign obtains if the
potential is a maximizer and the lower if it is a minimizer. An
interesting consequence of the existence theory of maxi-
mizers is thus a proof of existence and certain properties of
solutions of the necessary condition (2.9). The existence
theory of (2.9), especially when 4 = — A, the sign is nega-
tive, and a< (v + 2)/(v — 2), has been heavily studied; for
instance, see Refs. 8, 9, 32, and 33. While the theory is al-
ready fairly well established, we wish to note that an alterna-
tive and rather painless analysis is possible in some cases-as a
consequence of our existence theorems for optimizers. The
difference, in essence, is that while it is traditional to discuss
(2.9) as the Euler equation for a functional, we choose a
different functional, which has an L ? setting, allowing more
direct use of the spectral theorem. Let us restrict our atten-
tion to the ground state, which is automatically nondegener-
ate with a positive eigenfunction:
Corollary I1.7: Let Q be bounded and a > 1. For any
A>E(0) (= the fundamental eigenvalue of the operator
A) and any ¢ > 0, the nonlinear eigenvalue problem

Au + cu® = Au (2.10)

has a positive solution ue W ().

Remarks: (1) If the coefficients in 4, W, and 90 (sup-
posing that €} has a boundary) are smooth, and a is suffi-
ciently small, then # will be smooth by elliptic regularity.

(2) This equation arises in the study of the relationship
between Laplace—Beltrami operators and Schridinger oper-
ators, and has recently been used to demonstrate the exis-
tence of Laplace-Beltrami operators on R> with periodic
metrics and gaps in their spectra for v> 1 (cf. Ref. 34).

Proof: We suppose ¢ = 1; this can always be achieved by
scaling the function u. The existence of a potential ¥, maxi-
mizing the ground-state eigenvalue of 4 + V subject to
(¥, =M for any M > 0 is known from Theorem II.1, with
a=(p+1)/(p—1). If the maximized eigenvalue is E,,,
then the necessary condition (2.9) becomes (2.10) with
u=u, and A = E_. The theorem will thus be proved if it is
shown that E_ increases continuously from E(0) to « as M
goes from 0 to «o. That it increases monotonically between
these limits is obvious. Continuity follow from the fact that
perturbations xP(x) with bounded functions P(x) affect
both the spectrum and the L? norm continuously. [Strict
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monotony, needed below, follows similarly with positive,
bounded P(x).] [ |

With the other sign we recover a variant of results de-
scribed in Refs. 8, 9, and 32.

Corollary I1.8: Suppose (1 is bounded and smooth, and
A= —A+ W, with WeL? p>v/2. Then for any
A<E(0) =infsp(4),and any l <a < « (ifv=10r2) or
<(v+2)/(v—=2) (if v>2), the nonlinear eigenvalue
problem

Au —cu® =AU (2.11)

has a positive solution in W }*(Q) (which will be smooth if
W is smooth).

The proof is just like the previous one, except that it
relies on the existence of minimizers guaranteed by Corol-
lary IL4. This corollary could be extended to guarantee the
existence of certain other (not everywhere positive) solu-
tions of (2.10) and (2.11) and of equations with other ellip-
tic operators 4.

lll. OPTIMIZING POTENTIALS IN ONE DIMENSION
A. Preliminarles and general resuits

The general conclusions of Sec. IT apply, of course, to
the one-dimensional case, where, at least for Dirichlet or
Neumann boundary conditions, the eigenvalues are auto-
matically nondegenerate. The equation characterizing the
optimizers (2.9) reduces to an ordinary differential equa-
tion, which can be interpreted as Newton’s equation for an
autonomous system. Following up on this idea, which was
used by Glaser et al.? in the context of a very similar equation
that also arose in the context of an optimization involving
the Schrodinger equation, allows us to characterize the opti-
mizing potentials rather explicitly. We call the independent
variable ¢ because of this interpretation. For definiteness, we

taked = — d?/dt*anda > 1 throughout thissection, sothat
(2.9) becomes
d*u

= 4 sgn(u)|u|*— Eu. (3.1)

dt?
Only three domains need be considered, a finite interval
[0,/], the semi-infinite interval [0,00), and the line
R = ( — w0, ). On the other hand, we wish to broaden our
scope by considering a variety of self-adjoint boundary con-
ditions in addition to those of Dirichlet type. The status of
the existence question depends somewhat on whether the
interval is finite or infinite and, if infinite, on what sort of
boundary condition is imposed at the finite end point. We
recall that if Q@ = [0,00 ) or ( — o0, ), then there is contin-
uous spectrum [0, o ). If we define eigenvalues by the min—
max principle, it may happen that E; (¥) = 0 and fails to be
a proper L 2 eigenvalue for finite k.

We shall only consider the self-adjoint boundary condi-
tions

Sf'(0) =mf(0),

(3.2)
)= +mfl), mreal
or Dirichlet conditions,
f0)=0, fA)=0
[formally, m = « in (3.2)].
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Definition: When Q0 = [0,/] or [0, % ), theindex k of the
eigenvalue E, (V) will always be taken as the number of
nodes for 0 < t€Q). When ) = ( — o0, 0 ), kis the total num-
ber of nodes for — 0 << 0.

This ordering, which is somewhat traditional for ordi-
nary differential equations, corresponds to that of the min—
max principle when E, (V) is an L’ eigenvalue with the
proper boundary conditions. It means, however, that on
[0,/] the Neumann eigenvalues (m = 0) are numbered

E0<E]<E2"' ,
whereas the Dirichlet eigenvalues are numbered
E «<E,<E; .

The m eigenvalues may follow either numbering, depending
on the problem. Theorem IIL.2 shows that it is the right
convention for our problem.

Theorem IIL1: Suppose ) is a finite, semi-infinite, or
infinite interval with Dirichlet or »n boundary conditions
(3.2) imposed at any finite end points: For I a fixed finite
interval which is possibly equal to [0,/], and p>1, let
S={feL?| || fll, <M, suppfCI}. Let E, (V) denote the
k th eigenvalue of —d?/dt? + V. Then E, (V) attains its
maximum and minimum on S (but might be trivially O if
there is a continuum). If Q = [0,/] or the optimum lies be-
low the continuum, then the associated eigenfunction at op-
timization satisfies (3.1) on the interval 1.

Proof: Existence has already been shown for bounded
intervals, and the boundedness of the support is all that mat-
ters in that proof. The eigenvalues are automatically nonde-
generate, so the characterizing equation (3.1) always ap-
plies. O

Except under some circumstances for the ground state,
the maximizing problem degenerates into the continuum
when  fails to be finite. On the other hand, it is an elemen-
tary min—max exercise with widely spaced square wells to
see that there can be arbitrarily many negative eigenvalues
no matter how small the L” norm of the potential, so mini-
mized eigenvalues are honestly eigenvalues if I is large
enough. The question of the existence of minimizers on infi-
nite intervals without the finite-support restriction is more
involved. Because the operator —d?/dt? + V is defined
with a core of compactly supported functions, one can con-
sider first the minimizers on a finite interval and let the
length of the interval tend to infinity. In essence, if the mini-
mizers remain localized, then their limit is the minimizer for
the infinite interval, but if they move to infinity, then the
infinite interval has no minimizer. We shall see below that
minimizers exist for the interval R or the interval [0, )
with Neumann boundary conditions, but not for [0, « ) with
Dirichlet boundary conditions. If minimizers exist, then
they satisfy (3.1) with the negative sign.

Interpreting (3.1) as Newton’s equation for a one-di-
mensional oscillator, we can identify what we call the classi-
cal potential energy as

W(w;E) = Euv*/2F (ul*t '/ (a+ 1), (3.3)

and the equation of conservation of classical energy is

u?/2+ WwE)=h, 3.4
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Maximization Problem

@ £>o0 () E<0

max

ANV

v,
crit

Minimization Problem

(¢) E<o (@ =20

VARV ;

FIG. 1. Typical graphs of the classical potentials W («;E). Maximization
problem: (a) E> 0, (b) E<O0; Minimization problem: (¢) E <0, (d) E>O0.

where we have used / to denote the parameter we shall refer
to as the classical energy. See Fig. 1 for the graph of W. Note
that the quantum energy £ appears as a parameter in the
classical potential energy, which can be viewed as a spring
constant for the harmonic part of the potential when E > 0.
The quantum potential appears only via u. The boundary
conditions appear as an initial condition coupled with a final
condition (¢ = /). Thus the Dirichlet and m boundary con-
ditions (3.2) for [0,/] with the + sign, which we designate
+ mboundary conditions, correspond to classical trajector-
ies that execute k /2 closed orbits, k integral. (Phase dia-
grams are shown in Fig. 2.)

Remark: To determine the numbers E } and optimizing
potentials ¥ ¥ one first solves (3.1), treating E as a param-
eter, for trajectories with the proper initial and final condi-
tions and number of nodes, and then uses the algebraic con-
dition (2.7) to determine M = ||V||, from u by performing
an integral. When several candidates for the optimizer occur
the one giving the smallest value to M is selected. The inverse
of the function thus defined gives E ¥ as a function of M. As
noted in the proof of Corollary I1.7, the optimal eigenvalue is
strictly monotonic and continuous, so this is well defined. In
addition, the set of allowed values of E,. for a given problem
is exactly [E, (0),0) or { — «,E;(0)], as appropriate,
where E, (0) is the k th eigenvalue of the potential V'=0.

This point of view allows some general properties of the
optimizers to be read off even without detailed analysis.

Proposition I11.2: Consider the maximizing (resp. mini-
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Mayimization Prohlem

FIG. 2. Typical phase space portraits. Maximiza-
tion problem: (a) E>0; (b) E <0; Minimization

u problem: (¢) E <0,(d) E>O0.
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(d) E>0 !

71N

FIG. 2. (Continued.)

mizing) problem for any fixed p> 1, M, k> 0, and the finite
interval. The maximized (minimized) eigenvalues are the
same for the Dirichlet problem and all + m boundary con-
ditions. The maximizing (minimizing) potentials in these
cases are periodic translates of the maximizer (minimizer)
V.p for the Dirichlet problem, which is smooth and positive
except at its nodes and has the following symmetries for inte-
gersj, 0< j<k:

Vip(I— 1) = Vup (1), (3.5)
Vo Gl /k) =0, (3.6)
Vo (£ +j1/k) = Vup (1) . (3.7)

Proof: Because the eigenvalues are determined by the
nodes, the determining equation (3.2) for all these cases cor-
responds to executing exactly & /2 closed orbits (cf. Fig. 2).
The symmetry (3.5) reflects invariance under time reversal,
since V'is proportional to a power of |u| by (2.7). Similarly,
(3.6) and (3.7) just state that each orbit executed is identi-
cal, since the dynamical system is autonomous. Smoothness
of u and the corresponding potential (away from zeros)
arises from iterating the standard local smoothness theo-
rems for solutions of the eigenvalue equation and applying
(2.7). Theintegrals involving u that one has to perform have
the same values for different boundary conditions, since they
correspond to different starting points in the phase plane for
the same number of identical half-orbits. Thus the functional
relationships between the eigenvalue and M, whatever they
are, are identical. O

Observe that the bottom Neumann eigenvalue is not
covered, and in addition some m eigenvalues are excluded,
because their eigenfunctions are nodeless (cf. Fig. 2). The
dynamic geometry becomes more complicated for these
anomalous trajectories enclosed in the separatrix, and will
not be described here. Anomalous behavior occurs in the
minimizing problem when |m| <y — E.

We note that one needs to deal with the case E<0 in the
maximization problem for the k th eigenvalue only if the
boundary conditions are such that H, = — d2/dt? with
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these boundary conditions has its & th eigenvalue negative.
Even then the maximal k th eigenvalue for a given M may
well be positive (particularly if M is large). For Dirichlet
and Neumann boundary conditions all eigenvalues of H, are
non-negative so £<0 need not be considered. The minimiza-
tion problem on a finite interval will, however, require consi-
deration of E>0, particularly for higher eigenvalues, even
for Dirichlet and Neumann boundary conditions. For mini-
mization on an infinite or semi-infinite interval, on the other
hand, one need only consider £ < 0.

From Eq. (3.1), one can derive certain useful integral
identities relating

2
J(ﬂ) dt, fuzdt=J|V|P—‘dt,
a \ dt a a

and
f|u|a+1dz=f|V|u2dz=f|V¢Pdt.
[9) Q 0

If one multiplies through by # and integrates the derivative
term by parts once one obtains
an .

2
f (d—u> dtif|u\“+‘dt=Ef uzdt+(uﬂ)
a \ dt a ) dt
(3.8)

On the other hand, by integrating the conservation of the
classical energy equation (3.4) over {2, one finds

1 du)2 | J‘ .
— — ) dt ul*ttde
ZJ;)(dt +(1+1 ﬂl |

+iEJ' W dt =h Q.
2 Ja

(3.9)

The two integral identities above, Egs. (3.8) and (3.9), can
be used to determine any two of f,u’?dt, §, u*dt, and
Solu|®t'dr in terms of the third. Note in this connection
that since we scaled « to send the constant to 1 in the poten-
tial term of Eq. (3.1), weare not free to normalize # now. By
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solving for §,u'%dt and §q |u|** ' dt interms of f,u* dt we
find

Wl = [ fule+ de
Q

2 1,
= 2B ul ~ k10l + S

2p ]

3.10
2p—1 an ( )
and

) 1 .
41 = 2 [ = E Wl + 22101 + (0= D ]
(3.11)

B. Optimization for the line and the half-line

We are now ready to discuss the optimization problem
for the line and half-line. In these cases the condition of
square integrability of u at «o forces us to consider only those
trajectories for which 4—0 as ¢« (and also u—0 as
t— — oo if {2 =R). This provides a further simplification
since this can be accomplished only by trajectories of classi-
cal energy / = 0. Thus the energy relation simplifies to

W+ B F(a+ D7 Hul* ' =0 (3.12)
and the integral identity (3.10) becomes
IVIE = £120/(2p = DI[ENJull} +uw'lsa] . (3.13)

Equation (3.12) with the lower ( + ) sign has as its solu-
tions

u(t) =(— pE/(p—1))p-b72
Xsech?~'[V—E(t—cy/(p-1], (3.14)

where c is a constant of integration. The fact that we have a
family of solutions which are all translates of one another
reflects the fact that Eq. (3.12) is autonomous. The corre-
sponding potential is given by

V(t)=[pE/(p— )]seck®*[V=E (t —c)/(p — D],
(3.15)

which is familiar as the soliton solution to the Korteweg—de
Vries equation when its variables are readjusted and inter-
preted appropriately. With the upper signs (maximization
problem) these solutions are replaced by

u(t) =__(__pE/(p — l))(p—-l)/z

xXesch 'V —E(t—e)/(p~1]  (3.16)

and
V() =[~pE/(p— Dlesch? [V —E (t—¢)/(p—1)].
(3.17)

For minimization on £} = R, we find that for any choice
- of cin Eq. (3.15), V(¢) gives the same eigenvalues and has
the same p norm. This is just a reflection of the fact that
Q) = Ris translation invariant which leads to nonuniqueness
of the minimizer for this problem. Computing || V||, we find

We =p(—E)*-b2/(p—1)»~'B(p}), (3.18)

where the beta function B(p,}) arises through use of the
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identity

- 1 af+1
h" x tanh® dx.—=——B(-—-,--—~).
'L sech® x tanh® x > M)
We thus obtain the optimal lower bound in terms of || V||,
for the ground state

Eo(M)» — [(p— 1P~ /pPBY) 1Y~ Py |3/ @ =D
(3.19)

This result was derived by Veling'®® by quite different
means. If one defines the optimal bound given on the right
above as hy (M) where M = || V||, that is,

he (M) = — [(p— 1)?~ V/pPB(p}) |¥ ¥~ DM ¥/ @~ 1)
(3.20)

then the corresponding bounds on R* with either Dirichlet
or Neumann boundary conditions, denoted by Ag. , (M)
and Ay 5 (M), respectively, are given by

by (M) = hg ((2MP)'/?) =272 = Dp (M) (3.21)
and
o (M) = hg (M) . (3.22)

These bounds were also first derived by Veling.!** By way of
explaining these bounds from our perspective we note that
the Neumann ground state on R corresponds to the ground
state on R but that in passing from R™* to R via reflection we
double M? . Alternatively, we could observe that Neumann
boundary conditions force ¢ = 0in Eq. (3.15). The situation
for Dirichlet boundary conditions is somewhat more com-
plicated. Here there is no optimizing potential but thec— «
limit of Eq. (3.15) is seen to produce an approach to the
optimal bound hg.p(M). We therefore have the strict
bound

Ex V) > hn*,l) (M)

for the ground state energy of the Dirichlet problem on the
half-line. Lack of an optimizing potential prevails in the
cases where & = R or R™ for all higher eigenvalues since
there are no trajectories that cross the u axis in these cases.
Optimal bounds for higher eigenvalues will now be giv-
en. These bounds were not considered by Veling nor could
they have been found by his methods. The heuristic argu-
ment given here will be justified only after we have analyzed
the finite-interval problems since we will use a limiting argu-
ment to pass from these back to the infinite and semi-infinite
interval problems. For a given value of M, our best strategy
for minimizing E, (¥) is to have Ey(V),....E, (V) be very
close together by spreading ¥ out into k¥ + 1 similar but
widely separated wells. For an infinite or semi-infinite inter-
val we canmovethesek -+ 1arbitrarily far apart and thereby
make E; (V) for i = 0,...,k come arbitrarily near to each oth-
er and to the lowest eigenvalue that would be supported by
any one of the wells individually. Itis not cost effective with
respect to our constraint M to use fewer (or more) than
k -+ 1 distinct wells in trying to minimize the (k + 1)th
eigenvalue. Indeed, a single well in one dimension may only
support one eigenvalue while k widely spaced wells can be
made to support k eigenvalues if the spacing is made suffi-
ciently large. This reasoning suggests that for {} = R and for

(3.23)
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Q) = R™* with Dirichlet boundary conditions
E, (M >he (IVII5/(k+ 1))
= (k+ 1) ¥ D (JIV],) for k>1  (3.24)
while for £ = R* with Neumann boundary conditions
E (V) >ha (|V|5/ (K + 1))

= (k+1) Y@ D (|V|,) for k>1. (3.25)
These are optimal bounds for £, (V) in terms of ||V||,. The
bounds for R with either Dirichlet or Neumann boundary
conditions could also be obtained from that for R by exploit-
ing the relation between E ,, for R and E, for R™ with Neu-
mann conditions and between E,; , ; for R and £, for R™
with Dirichlet conditions. Note that there can be no bound
in terms of || V||, to the number of negative eigenvalues in
any of these problems. However, the results above lead rath-
er effortlessly (in fact, are equivalent) to bounds on N ( V),
the number of eigenvalues less than or equal to £ < 0. The
bound on N (V) arising in this way when 2 = R is a special
case of a result of Glaser, Grosse, and Martin [cf. Ref. 2, p.
203, Eq. (28) with ¢ = 1]. Their general result follows from
the special result used in conjunction with the min-max
principle; a particularly simple consequence is that ||V]|,
may be replaced by ||V_|, in all our bounds [here
V_(t)=min(0,V(#)})]. In addition, we remark that the
bound on N (V) of Ref. 2 also applies when ) = R™ with
the Dirichlet boundary condition, whereas with the Neu-
mann boundary condition an extra | must be added to that
bound.
We turn now to the case where {} = R™ with general
boundary conditions of the form

u'(0) = mu(0), (3.26)

To see what £’s would be reasonable candidates as eigenval-
ues for this problem we observe that £,(0) = 0if m>0 and
E,(0) = — m?if m <0. Thus for the minimization problem
any E <0 is a reasonable candidate for all £, ’s if m>0 and
forall E, s with k> 1if m < Obut only E ’s less than — m” are
reasonable candidates for £, if m <0.
Similarly, for the maximzation problem we need only
consider E, for m <0 and then only E’s in the range
— m? < E <0 are reasonable candidates as maximal eigen-
value. For the minimization problem, we can meet the
boundary condition (3.26) if we choose ¢ in Eq. (3.15) to
satisfy

m=\ —E tanh(y — Ec/(p — 1)).

meR.

(3.27)

Since the range of tanh is ( — 1,1) and tanh is strictly in-
creasing, this equation will have a unique solution ¢ if and
only if |m| <y — E or, equivalently, E < — m?®. Thus for
fixed m there will be a ground state minimizing potential
associated with each £ < — m?, whereas for 0> E> — m?
there will not be. However, whenm > 0and 0> E> — m” we
will be able to construct sequences of approximate mini-
mizers (a minimizing sequence of potentials) and thereby
determine optimal bounds on the eigenvalue as was done
above for the Dirichlet problem. Such considerations also
apply to higher eigenvalues as before. The optimal lower
bound for the lowest eigenvalue is now given implicitly by
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the relations

pp( _E)(pr 1)/2
20— 1!

2
x [B (%,p) + (sgnm)B (—“é’—’—%p)] (3.28)

for E <« — m?, where the incomplete beta function, B(x;p,q),
is defined by

i, =

>4

B(x;p,q) zf P11 — )4 'dr for 0<x<1.

0

(3.29)

For all m>y — E the Dirichlet optimal bound, Eq. (3.22),
applies. For fixed E, it is of interest to see how classical oscil-
lator trajectories come into play with reference to Fig. 2(c¢).
Actually, only the trajectory labeled s (for separatrix) is
needed in this analysis. Our parameter m governs the slope
of the line whose intersection with this trajectory is our ini-
tial position. For —y — E <m <+ — E asegment of trajec-
tory is cut off and this segment determines the optimizing
potential and wave function that go with our chosen value of
E. As m increases across this interval we include more and
more of the trajectory until at m = — E the whole trajec-
tory is included. This corresponds to ¢, the position of the
center of the sech? well, moving from — o t0 . As m
moves on up from y — E, m has no further effect on the
optimal relation between E,(¥) and [[V'||,. On the other
hand, as m moves on down from —/ — E, one finds that
the eigenvalue E,(0) = — m” of the same problem with no
potential is less than E and so E can never be a minimal
lowest eigenvalue for these problems. Higher eigenvalues
can be treated analogously. In place of Eq. (3.28), one ob-
tains

P(—E)r =17
2p -1
1 —m’ 1
x[(2k+ DB(5p) + (sanm)( - ;74:)]
(3.30)
for E < — m? for m>\ — E one obtains the Dirichlet an-

swer, Eq. (3.24), and for m< — y/ — E one obtains the Dir-
ichlet answer with index adjusted by 1. Lastly, we consider
briefly the maximization problem for the ground state when
m < 0. We need only concern ourselves with the case of

m«< —+ — E. From Egs. (3.16) and (3.26), the relation
between the parameters m and ¢ is found to be

m=y—E coth[—Ec/(p—1)]. (3.31)

Also the optimal relation between E, (V) and || V||, is given
by

Ve =[pP(—E)> 722(p—1)" 1]
XB(1+E/m* p, 1 —p), (3.32)
where — m? < E <0. Note that the beta function ranges

Vi =

from 0 to « as m ranges from y — E to — oo since the
argument } — p makes B(x;p,} — p) singularasx—17. This
is in accord with the qualitative phase space analysis [see
Fig. 2(b)] where we cut off various parts of trajectory s for
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— w0 <m< —+ — E, including more and more of the di-
verging partas m— — .

C. Optimization for finite intervals

For finite interval problems we can no longer confine
our attention strictly to trajectories of classical energy 4 = 0.
Since we shall deal primarily with Dirichlet and Newmann
boundary conditions and their associated family of equiva-
lent boundary conditions (see Proposition IT1.2) it is useful
to begin with a treatment of the periods of the classical orbits
which occur in the various cases. In the maximization prob-
lem with E>0, one finds that the classical period T'(4,E)
ranges monotonically from the harmonic oscillator limit,
27/JE ,ash—0" to o as 4 approaches the maximum value
of the classical potential. This can be seen from the expres-
sion

“ du
T(hE) =4J _ (3.33)
o \2(h — W(u;E))

where u, is the first positive turning point of the classical
motion. A detailed analysis of the period function T in a
general setting is to be found in Refs. 35-37. By changing
variables to s =u/u, and writing k2 in terms of u; via
h = W(u,;E) we obtain .

T(h,E)
=4J‘1 ds .
o VE(1—5*) —[2/(a+ D]ud~ (1 —s*+")
(3.34)

Now as is evident from Fig. 1(a), u, is a strictly increasing
function of £ for the range of 4’s we are considering and
hence we may analyze how T changes as /s varies from O to
the maximum value of the classical potential by seeing how
expression (3.34) changes as u, increases from O to the posi-
tion of the maximum of the classical potential. Since the
integrand increases with u, for all se{0,1), it is clear that T'is
strictly increasing as a function of #, and hence also as a
function of h. For the minimization problem with £ <0 the
classical orbits fall into two classes: those with >0 and
those with 2 < 0. By an analysis almost identical to that given
above we arrive at

T(h,E)

=4J'l ds
o J[2/(a+ D]ud~ (1 —s**1) + E(1 —52)
(3.35)

for the case where 2> 0. This time 4 ranging from 0 to o«
corresponds to u, increasing monotonically from u, ,,,;, [de-
fined by W(u, min;E) =0, 4y nin >0] to o which in turn
corresponds to T decreasing from oo to 0. Next we consider
the orbits having % < 0. The result is much like that for Fig.
1(a) in that T is found to approach a harmonic oscillator

limit, 27/\(a@ — 1)( —E), as h approaches the minimum
value of the classical potential and to increase to « as A
increases to 0. T'(h;E) is continuous and positive for 4 in the
range described. The question of whether or not it is mono-
tonic is difficult. Recent results of Chicone?® and of Chow
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and Wang>® can be used to show that T'is monotone increas-
ingin A for h <0and forall p > 1. Later in this paper we shall
explicitly treat the case where p = 2 in terms of elliptic func-
tions as a preliminary to settling further questions for this
case. Lastly we consider the case arising from the minimiza-
tion problem with £>0 [Fig. 2(d)]. When £> Qit is easy to
show that T ranges monotonically from the harmonic oscil-
lator limit, 277/E , down to 0 as k varies from 0 to co. When
E =0, T ranges monotonically from c to O for the same
variation of 4.

The considerations above are of use to us for the Dirich-
let and Neumann optimization problems on a finite interval
[0,I] through the following observations: for the function
u(¢) associated with an optimizer of E; to meet Dirichlet or
Neumann boundary conditions it must execute an integral
number of half-orbits in time /. The integer occurring here is
associated with the index k; in fact, for the Dirichiet and
Neumann problems we have the condition

kT(hE,)/2=1 for k=12,3,..,

though for £ = Oin the Neumann minimization problem we
have the condition

(j/2)T(hE,) =1 for some je{1,2,3,..}. (3.37)

Also critical points on the « axis will have to be examined in
the Neumann problems. We remark that these conditions
are to be viewed as conditions determining values of 4 which
are allowed by some given choice of E and k. If for such a
choice we have several classical orbits or critical points
which give candidates for optimizers we will have to decide
among these by computing the values of ||V}, associated
with them and taking the candidate which gives the least
value. To the extent that the conditions above lead to a single
candidate we will have characterized the unique optimizer.
For the sake of reference we list the eigenvalues of — d 2/dt?
with + m boundary conditions. They are

E, (0) = (ka/D?, k=1.23,..
and
Ey(0) = —m? (3.39)

with the latter eigenvalue present for all meR (but not for
Dirichlet boundary conditions, which correspond to
m- 4+ o).

Let us now give brief discussions of each of the most
standard finite interval cases individually. For the Dirichlet
maximization problem our discussion of periods allows us to
find exactly one maximizing candidate for any choice of E

and k so long as 21 /k > 2n/\/E . Thus if
E> (kn/1)?=E,(0) for ke{1,2,3,..}, (3.40)

E will arise as a maximal value E ¥ (M) for some choice of
M > 0 and we have an explicit characterization of the maxi-
mizing potential and eigenfunction. This same analysis ap-
plies to the higher eigenvalues (k>1) for the Neumann
maximization problem. For the ground state the only candi-
date for the maximizer comes from the critical points not at
the origin and we are done. Here E should be chosen to be
positive. Theorem II1.2 also allows the results above to be
applied to the + m boundary conditions, Eq. (3.2) with the

(3.36)

(3.38)
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plus signs, which are related to Dirichlet and Neumann
problems. With + m boundary conditions the allowed val-
ues of E for ground state maximization are given by
E> — m? When E<O0, this condition can be rewritten as

|m| >+ — E and the trajectories that arise as candidates for
yielding the maximizing potential are then found to be por-
tions of phase curves in Fig. 2(b) lying above the curve s’ or
below the curves, i.e., curves having positive classical energy
h. When E >0, one can find analogous nodeless solutions
corresponding to trajectories having classical energy
h> W, [seeFigs. 1(a) and 2(a)].

The Dirichlet minimization problem is almost as simple
as the above since orbits with # <0 are ruled out by the condi-
tion #(0) = 0 = u (/). Allowed minimal E,’s are given by

E<E, (0) = (kn/D)? for k=123,.... (3.41)

This condition could also be read off from our knowledge of
the classical periods since for £<0, T ranges between 0 and
o for h€(0, o0 ) and for E > 0 T ranges from 277/{E down to
0'so that only those E’s for which k#/JE > lor E < (kn/1)?
are attainable as minimal E, ’s for M > 0. When one consid-
ers the corresponding Neumann problem all the trajectories
Jjust discussed come back into play though not yet as unique
minimizers since one now must contend with the additional
orbits which occur when 4 < 0 and E < 0. First, we note that
the constraint on choices for £, Eq. (3.41), still holds but
now for k =0,1,2,... . Second, note that the situation for
E>0is the same as before and thus we have already charac-
terized the unique minimizing potentials for this case. When
E <0, however, we may now have two or more choices of
orbits to consider as well as the critical points not at the
origin. These may be sorted by node counting: note that the
orbits or critical points for which /4 < 0 have no nodes [see
Fig. 2(c)] and hence can at most be candidates as mini-
mizers of the ground state. At this point higher states are all
uniquely characterized but there remains the question of
whether the ground state minimizer comes from the critical
point (implying a constant potential) or from an 4 < 0 orbit.
Each h <0 orbit leads to two optimizing candidates corre-
sponding to the two possible starting points. Since both
choices lead to the same M value, if such an orbit gives rise to
aminimizer it gives rise to a second minimizer as well and we
would therefore have a nonunique minimizer. The situation
for + m boundary conditions is even somewhat more in-
volved. Again, by the node-counting argument the 4 <0 or-
bits are only of importance when looking for the ground-
state minimizer.

Furthermore, one can show that the classical Hamilto-
nian function, A(u,u’), is an increasing function of radial
distance from the origin (u,4’) = (0,0) on the region of the
phase plane outside the separatrix s, which is the figure-
eight-shaped curve formed by the # = 0O trajectories [ see Fig.
2(c)]. Thus any ray from the origin intersects each 4 >0
orbit exactly once and, in addition, we need only consider the
h <0 orbits when m and our choice of E are related by

|m| <y — E . This last condition comes from the fact that
the 7 = O trajectories enter the origin with asymptotic slope

++ — E.When |m| <y — E there will surely be a nodeless
solution and thus E can be an E ¥ as in the Neumann case.
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D. Bounds on the number of negative eigenvalues for
finite-interval problems

We turn now to the topic of finding bounds in terms of
||V, on the number n(¥) of negative eigenvalues for the
operator H, = —d?/dt* + V(t) acting on L *(0,/) with
Dirichlet or, more generally, + m boundary conditions.
This problem is especially tractable since we need only deal
with the E = O case of the minimization problem. This elimi-
nates a term from Eq. (3.4) and allows us to solve explicitly
for the period

T(h,0) = 242k = ((p — 1)/2p)?+ VB ((p — 1)/2p,3);
(3.42)

in addition, the integral identity (3.10) reduces to
WVs =12p/(2p — DAL (3.43)

Thus in the case of Dirichlet boundary conditions, for V' to
admit the possibility of having & negative eigenvalues we
must have

“V“Z > [klp(p _ 1)P+1/(2p —1)%>- 1pp]
XB((p—1)/2piy* (3.44)

and, since + m boundary conditions simply require an in-
dex shift, we have proved the following theorem.

Theorem IIL3: The number of negative eigenvalues
n(V) of the operator H, = —d?/dt* + V(t) acting on
L*(0,]) subject to + m boundary conditions and with V
eL?(0,]), 1 < p< o, V_=~£0, satisfies the bound

pl/ZHV_HII’/Z [ (2p _ 1)12p—1]1/2p
B((p=D/2pl) L (p—1)°+! '

n(V)y<1+

(3.45)

In particular, (3.45) applies in the case of Neumann bound-
ary conditions. The same bound applies in the case of Dirich-
let boundary conditions if the additive 1 is deleted, and, fur-
thermore, these bounds are optimal bounds for n(V) in
terms of | V_||,.

Remark: The part of this theorem dealing with Dirichlet
boundary conditions was first proved by Grosse (cf. Ref. 40,
p. 94, Proposition 1).

E. The Neumann ground state minimizer for p=2: A
bifurcation phenomenon

Other problems which may be integrated in terms of the
more standard special functions are the cases of Eq. (3.4)
with p = 2 or 3 [corresponding to @ = 3 or 2, respectively,
via a=(p+1)/(p—1)] and general E. The solution
u(t) may then be expressed in terms of elliptic functions.
Here we shall pursue the special case p = 2 with E <0 in an
effort to understand the ground state of the Neumann mini-
mization problem which we left incompletely characterized
in the case of general p.

Thus we must look at solutions to

w?=2h—Euw? —u/2, (3.46)
where # <0 for which 4'(0) = 0 = «’(/). The critical point
at (u,u') = (y — E ,0) certainly yields one solution

Uty =y —FE .
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To see what other solutions need to be considered, we ob-
serve that the general solution to Eq. (3.46) above is

u(e) =adn(at/\/§—c,,u) , (3.48)

where dn represents one of the standard Jacobian elliptic
functions.*! Here c is the arbitrary constant of integration,

a=y—E+ (E*4 4h)'"? (3.49)

and the parameter u ( = mod squared) of the elliptic func-
tion is given by

p=1-b%a*, (3.50)
where
b>= —E—JE*+4h . (3.51)

The constants a* and b 2 are simply the roots of the right-
hand side of Eq. (3.46), when this is viewed as a quadratic in
u*. Now the period of dn(-; ) is 2K ( u), where K( u) rep-
resents the complete elliptic integral of the first kind.*! To
meet the boundary conditions we impose

c=0 orc=K(pu) (3.52)
and
| = jT(KE)/2 =j(\2/a)K(u) , where je{1,2,3,..}.
(3.53)

Before we can proceed, we must analyze the function
K(pu)/aasafunction of o for — E*/4<h<0[ —E%/4is
the minimum value of W(u;E)]. We will see that as # in-

creases across this range (y2/@)K( u) increases from the
limiting value 7/y — 2E to infinity. This may be shown as
follows. First, we observe that u and 4 are related by

pu=1—(b%a*>)=2JE*+4h /(—E+JE*+4h)

(3.54)
so that
VE?¥4h =u(—E)/(2—p) (3.55)
and thus
a?=2(—E)/Q2—u). (3.56)

Now it is easy to show using calculus that g increases mono-
tonically from O to 1 as / increases from — E %/4t00. Hence
we will be done if we can show that

[V2=u)N=E]K(p) (3.57)

is an increasing function of  for 0<u < 1. To verify this we
show that this expression has a positive derivative and this
amounts to showing that

2(2—#)—“%(#»1((#) for 0< u<l. (3.58)

This inequality follows by demonstrating that the power se-
ries for K( u) at 4 = 0, which has positive coefficients and
radius of convergence 1, is majorized by that for
2(2 — u)dK /du( p). Finally, it is easy to see that the limit-
ing values are as stated above. This analysis shows that solu-
tions (3.48) satisfying condition (3.53) do arise if

I>jm/\—2E for je{1,2,3,..},
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ie., if
E< —(jo/h)? for je{1,2,3,.}. (3.59)

Therefore, we have the following situation: if0> E » — 7%/
217 only the constant solution #,(?) is a minimizing candi-
date and hence it yields the minimizer, if — 7 2/2/>
>E> — 2 %/1? we have the constant solution plus two
*j = 1 solutions” [coming from the two choices for ¢, Eq.
(3.52)] as minimizing candidates, if —27%/I’>E
>972/21? we have the constant solution, two j = 1 solu-
tions, and twoj = 2 solutions as minimizing candidates, etc.
Here we shall concentrate only upon what happens as E is
decreased beyond the first critical value at — 7 %/2/2 This
problem exhibits an interesting bifurcation.

Proposition 111.4: The ground state minimizer for the
Neumann problem on a finite interval of length / withp = 2
undergoes a Dbifurcation at - M?>=x*4l> For
0 < M %<7 */41 > the minimizing potential is a constant func-
tion, but for M 2> 7 */413 it is a (nonconstant) Jacobian
elliptic function and is not unique.

Proof For Ebetween — m2/2/*and — 27 %/1? the oth-
er solutions that we must consider are

u,, (t) =adn(at /2, u) (3.60)
and
u,(¢) =adnlat /2 — K(u), ) =adnla(t— /2, u).
(3.61)

Since these solutions are simply reflections of each other in
the line t = / /2 and since all associated p norms will there-
fore be identical we shall use only the subscript 1 (without
the distinguishing a or b) for the most part. In the above,
K( ) and [ are related by Eq. (3.53) with j = 1; we shall
view this as an equation determining u as a function of £ (/is
assumed fixed). So as to work with explicitly small param-
eters as an aid in identifying orders of small terms we intro-
duce the scaled quantities € and 7 via

E=(—7/21*)(1 +¢)?
and
The question of which of u, or u, provides the minimizer will
be decided by a comparison of the norms M, = || V,||, and
M, = ||Vy||,. The solution yielding the smaller value of M
will be the minimizer. We begin by determining the first few
terms of the series for 77 in powers of €'/2. This series is guar-
anteed to exist and have a nonzero radius of convergence by
the analytic inverse function theorem applied to the function

(3.62)

F(z) = [(2/m)(1 —2)"?K(2z) — 1]Y2. (3.64)
This function is analytic at z=0 and satisfies F(0) =0,
F’(0) = 3/4. Relation (3.53) withj = 1 can now be repre-
sented as just €'/2 = F(7) if we substitute for a, E, and u
using Egs. (3.56), (3.62), and (3.63). Solving for 7 as a
series in €'/2 one finds

= (4/3)€"* — e+ (31/2/3)/> — s & + -+~
(3.65)
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and solving in turn for 4 one obtains
h= (774/161“)[ —1+4—3 + 0(63)] )

(3.66)

We can now proceed with the comparison of norms. Using the integral identity (3.10) we have (in self-explanatory notation)

M} —M5=4[(—E)(Jlu)]} - lluollz) + 1(hy — ho) ]

=—‘-3‘—[( _E)af2

K( p)

0

where E( u) represents the complete elliptic integral of the
second kind*!; to avoid confusion with the energy E we shall
always include the argument when writing this function.
Now an easy computation shows that

4(1 —EQ2n) — (4 — 87+ 3pH)K(27)
& (n—2)(n—3)
n=s n(n—1)

% [ (2n —5) ]zznann
2n — )Y

and hence that M3 < M ] for all 0 < < 1. Thus the solutions
u,, and u,, yield a lower ground state eigenvalue than u,, for
any M 2> 7 */4]°. Furthermore, at least for M 2 in the inter-
val m%/41° < M*<41*/1°, these j = 1 solutions yield the
minimizing potential since higher j solutions need not be
considered. O

We note that after the bifurcation at M? =7 %/4/>
(E * = 7 */21*) the minimizing potential ceases to be sym-
metric under 1~/ — ¢ (symmetry with respect to t =1/2)
but rather we get two minimizing potentials which trans-
form into each other under this operation. Since the problem
as stated also shares this symmetry we may say that the sym-
metry of the ground state minimizer breaks at M 2 = 7 */41 >
leading to nonuniqueness of the minimizer in this case. It is
perhaps worthy to note that the nonuniqueness of the
ground state minimizer for £2 = R can be described in analo-
gous terms: the original problem has translational symmetry
and all the nonunique ground state minimizers transform
into one another under translation. In addition, we conjec-

ture that the j =1 solutions give the minimizer for all
M?>mt/4]°,

= -3

(3.68)

F.The case of “compact-support”’ boundary conditions

We next take up a discussion of what we call compact-
support boundary conditions. In this category we consider
the operator H, on L *(R) or L *(R™ ), where VeL ?and Vis
further restricted to having its support in [ — 1,/ ] or [0,1].
Here we shall focus our attention on the compact-support
minimization problem on R; optimization problems on R*
with various boundary conditions at ¢ = 0 could be handled
similarly. For this problem the compact-support condition
implies that

u(t)IAiei"rj’ for + 1>/, (3.69)
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dn*(s,p)ds + 1( — E* + hy — hy)

$[ (= EYa2E(w) + 2K(p){E? + P E?/(2 —w)*}/a]
= [V2( = E)**/3(1 —n)*2] [4(1 — EQ2n) — (4 — 89 + 37")K(2n) ],

(3.67)

where 4, and 4 __ are arbitrary constants. These conditions
lend themselves to viewing the problem as a problem on
[ — 4,/ ] with boundary conditions

W(+h=FV—Eu(+Dh, (3.70)
which are what we call compact-support boundary condi-
tions. Just as in all previous finite-interval problems we must
first analyze the function giving the traversal times of our
classical trajectories, that is, the times which our classical
trajectories take in passing between the lines determined by
the boundary conditions. Since our point of departure in
these discussions is to fix E, that E appears in the boundary
conditions is not an obstacle, in fact, in a certain respect it
simplifies the calculation. (In this regard, it may be recalled
that in our work with + m boundary conditions the values
m = ++ — E were found to be critical values at which the
type of behavior encountered undergoes a transition.) We
begin by looking at the traversal time for the ground state

T.(hE) =2 f du .
w \2(h —1Ew® — [1/(a + 1) ]u Y

(3.71)
Here u, is the positive turning point of the classical oscillator
and u,> 0 gives its starting position: we start at the point
(u,u') = (uy, Vv — E ug) in phase space with classical ener-
gyh=[1/(a+1)]ug*'>0. We wish to see how T, (#,E)
varies as & varies from O to « . First, it is clear that 7, (h;E)
— o0 as #—07". Beyond this, we shall show that T, (h;E)
decreases monotonically to 0 as /4 increases from 0 to «. To
see this, we change variables in the by now familiar fashion,
arriving at

1

T.(BE)=2 ds/([2/(a+ D]us =" (1 —s*Th)

uy/u,

+ E(1—s¥))V2, (3.72)

Now as 4 increases, #, increases so that the integrand de-
creases and we will be done if we can show that uy/u, in-
creases with 4. This follows from the relation

[/(a+ D]ud ' =1 Eu? + [1/(a+ 1)]us*!
(3.73)
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rewritten as
u/uy = [1— [(@+ 1)/2]( — E)yu; = V]V@+D,
(3.74)

It also easily follows from this argument that 7. (4;E) —» 0 as
h— . Since existence of a minimizer is established
(Theorem III.1), we have the following proposition.

Proposition I11.5: For any p> 1, k, ], and M, there is a
unique potential satisfying ||V||,<M and supp(¥)
C [ — /] which minimizes E, (¥), the k th eigenvalue of
H, = —d?/dt*+ V(t) acting on L 2(R).

To be a bit more explicit, given an £ and an / the ground
state minimizer is provided by the classical trajectory whose
classical energy 4 is determined by

2=T,(KE) . (3.75)

We may proceed on to higher eigenvalues by observing that
the required classical trajectories must be determined by the
condition

20=T,(lE) + kT(KE)/2, (3.76)

where T(4;E) is the function giving the period of the asso-
ciated closed orbit considered previously [Eq. (3.35)] and
ke{1,2,3,...} indexes the excited state. Since T(#;E) was
shown to decrease monotonically from « to O as 4 ranges
fromOto oo, itis again clear that each E < 0 will yield exactly
one candidate as a minimizer of E and again by appealing to
our existence result the minimizing potential is now charac-
terized.

G. Technical arguments concerning unbounded
intervals: Passage from finite- to infinite-interval
problems

As promised earlier, we now present the limiting argu-
ments which prove our assertions about optimizers for
- 0 =R or R*. We concentrate on the case of minimization
on R, the other cases being similar. Let £ ¥ (M;/) denote the
minimal & th eigenvalue for the interval [ — /,/] with Dirich-
let boundary conditions at both end points and with M ?

=" ,|V()|?dt andlet E¥_, (M;R) be the correspond-

ing function for R where now M # = (= _ [V(¢)|?dt. By a
well-known argument using the min—max principle (essen-
tially reproduced below), E ¥ (M;[) is a decreasing function
of / and hence lim, , , E ¥(M;]) exists oris — o0. We shall
denote this limit by E ¥(M;/— « ).

Proposition I1I1.6: E¥_, (M;R) = E ¥(M;/- »). Fur-
thermore, the lower bounds given by (3.19) and (3.24)
hold.

Proof: First, we show that E}_,(M;R)XE?¥
(M;l- x ). To see this, consider the minimizing potentials
V¥(¢,) for the k th eigenvalue of the Dirichlet problem on
[ — L1 ]1. We extend these potentials to /€R by defining the
extension to be O off [ — /,/ ]. The resulting operators Hy, on
L?(R) can now be seen to have (k — 1)th eigenvalue less
than or equal to E ¥ (M,/) by applying the min—-max princi-
ple (form version, see Reed—Simon,?' Vol. IV) after observ-
ing that the extensions of the eigenfunctions of the finite-
interval problem lie in the form domain of the operator H,,
actingon L *(R). This proves E *_ | (M;R)<E *(M;l- »).
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To show the reverse inequality, we argue by contradiction.
Thus we suppose E ¥ _ | (M;R) < E ¥(M;l— o). By the de-
finition of E¥_ , (M;R), we can find a VeL ?(R) such that
E¥_ (V)<E,(M;- «). Now since C *(R) is a core for
H, the min—max principle applies with the supremum and
infimum taken over the intersection of C * (R) with the usu-
al sets. Thus, in particular, we can find & linearly indepen-
dent functions é,,4,,...,6,€C 2 (R) such that

sup (¢,Hy¢) <E,':(M;I—-»oo).
pespan{ ,,...¢,}
flellz=1

(3.77)

Wenow let [ — R,R] be an interval containing the supports
of the ¢,’s (i = 1,...,k) in its interior and define V, as the
potential ¥ restricted to [ — R,R]. Note that ||V ||, <[|V||,
and finally that E, (V) <E¥(M;/- »), which follows:
from Eq. (3.77) above and the min—max principle applied to
Hy, . But E, (Vg)>E¥(M;l=R)>E¥(M;l- ) and we
have arrived at a contradiction.

To eliminate the possibility that E # (M;R) = — «,l.e,
that

inf Ek(V)z — 0,

17 ll,< M
Vel P(R)

and to assist with our characterization of minimizers we
compute the limiting form as /- oo of the relation between
E* and M for the minimization problem on [ — /,/] with
Dirichlet boundary conditions. For this part of the argument
we shall view E as fixed and compute the limiting value of M
as /- «. We consider here only the ground state. We have

')
MP:f V()| dt
—1

!
=f lu(e) /2= D dt
.y
u, 2p/(p—1)
=2f 9 -~
o \2(h — W(g:E))

where we have changed variables to ¢ = #(¢) and the new
upper limit of integration #; = u,(4) is the positive turning
point of the motion of the classical oscillator (recall that
k>0 in this problem). To take the limit as /- «, observe
that as / approaches infinity 4 decreases to O so it suffices to
consider the limit of the expression above as #—0*. Note,
too, that as - 0%, u, decreases monotonically to «, (0), the
positive turning point when A = 0. We claim that as /-0

dq, (3.78)

u, (0) 2p/(p—1)
MP-»zf 4 -dg
o V(—E) —(2/(a+1]g""
(2p—-1)/2
_PN=E)” B(p,—l—) (3.79)
(p—1*~! 2

To see this, we break up the interval [O,u,(4)] into two
subintervals, [0,4,(0)] and [u,(0), u;(2)]. On
[0, #,(0)], the integrand in Eq. (3.78) increases pointwise
tothatin Eq. (3.79) ash decreases to 0. As for the other part,
we transform the integral to
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N

1 2p/(p—1)

(3.80)

zul(h)Zp/(pf n f

and, observing (by using Taylor’s theorem on the expression
under the radical) that the integrand is bounded by a con-
stant times (1 — s) /2 for s near 1 and / near O while the
length of the interval of integration shrinks to 0, we see that
this quantity goes to 0 as £—0". Now the limiting relation
between M and F represented by Eq. (3.79) is identical to
that given by Eq. (3.18). This shows that the solutions [ Eq.
(3.15)] exhibited earlier in this section are indeed mini-
mizers since they satisfy the characterizing equation (3.1)
and they attain the minimal £ allowable for the given M. O

The considerations above could also be applied to high-
er eigenvalues and to optimization problems on R* with a
variety of boundary conditions imposed at ¢ = 0. In particu-
lar, all the lower bounds exhibited earlier can be demonstrat-
ed in this way. Note, too, that the procedure we applied
above allows one to find the optimal bounds for eigenvalues
whether or not an optimizing potential exists. When such a
potential does exist we can find it using the characterizing
equation (3.1) in the manner used above.

H. Concluding remarks

In conclusion, we would like to emphasize what we be-
lieve to be the wide applicability of the techniques and results
presented above. In fact, there are a great variety of bound-
ary conditions not dealt with above to which the methods are
applicable. Furthermore, one could consider a different base
(unperturbed) operator H, = —d */dt* + W(t) to be per-
turbed to an operator H,, = H, + V where V obeys an L?
constraint. Yet another direction which could be pursued in
this context are the finite-interval optimization problems
subject to periodic or antiperiodic boundary conditions.
This problem cannot yet be treated by the methods described
above since one potentially has a problem with degeneracy of
the optimized eigenvalue which renders Proposition I1.6
useless (except in the case of the ground state for periodic
boundary conditions).

Note added: Since writing the preprint version of this
paper, we have learned of additional related work on similar
problems, using other methods. Specifically, we mention the
work of Egnell,** Essén,** Keller,** and Melentsova.*’

We are grateful, in particular, to Egnell* for pointing
out an error in an earlier publication.' In addition, we would
like to thank the referee for helpful suggestions.
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An estimation method for unknown parameters in the initial conditions and the potential of a
quantal system using the stochastic interpretation of quantum mechanics and some results in
system theory are presented. According to this interpretation the possible trajectories of a
particle through coordinate space may be represented by the realization of a stochastic process
that satisfies a stochastic differential equation. The drift term in this equation is derived from
the wave function and consequently contains all unknown parameters in the initial conditions
and the potential. The main assumption of the paper is that a continuous sequence of position
measurements on the trajectory of the particle can be identified with a realization of this
stochastic process over the corresponding period of time. An application of the stochastic
filtering theorems subsequently provides a minimum variance estimate of the unknown
parameters in the drift conditional on this continuous sequence of measurements. As simple
illustrations, this method is used to obtain estimates for the initial momentum of a free particle
given measurements on its trajectory and to construct an estimator for the unknown
parameters in a harmonic potential. It is shown that an optimal estimator exists if the
stochastic processes are associated with a wave function from a potential of the Rellich type. In
addition the a posteriori probability density of the parameters in the quantal system is
calculated, assuming that all parameters involved prescribe a Rellich potential.

. INTRODUCTION

Many problems in physics and chemistry require invert-
ing experimental data in order to obtain estimates of un-
known potentials. Most rigorous quantum mechanical ap-
proaches to inversion problems are based on the analytical
properties of the wave equation, which is, however, not a
measurable quantity. In this paper we approach the problem
more directly by employing the measurable amplitude of the
particles using the stochastic interpretation of quantum me-
chanics and then estimating the unknown quantities by
means of system theory. Since the square of the absolute
value of the wave function may be interpreted as the prob-
ability density of the position of a particle, it is possible to
associate a stochastic variable with it such that its realiza-
tions correspond to the collection of all possible trajectories
of the particle in coordinate space. It is known from stochas-
tic mechanics that this variable satisfies a stochastic differen-
tial equation of the diffusion type with a drift that depends
on the wave function.'™ The main assumption of this paper
is that position measurements of a particle over a continuous
period of time are equivalent to the realizations of this sto-
chastic variable on the corresponding time interval.

The drift term in the diffusion equation for the random
variable contains all the information of the initial wave func-
tion and the potential, so a realization of the stochastic vari-
able introduced above depends on the unknown parameters
in the quantal system. The inversion problem now reduces to
finding an estimator for these parameters given this realiza-

) Current address: Department of Applied Mathematics, Twente Universi-
ty of Technology, 7500 AE Enschede, The Netherlands.
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tion. This approach is detailed in Sec. II. From filtering the-
ory it is known that the minimum varianced estimator of the
unknown parameters at time s, referred to as a filter, is given,
by the a posteriori mean conditional on the obtained realiza-
tion.>!° In Sec. III we introduce a theorem, which shows
that under an appropriate condition such a filter satisfies a
stochastic integral equation known as the Fujisaki-Kallian-
pur-Kunita equation.''""* Under more restricted circum-
stances, the a posteriori mean can be calculated from a condi-
tional probability density that satisfies a stochastic partial
differential equation involving the observed realization as
input.'"

This approach is different from the parameter estima-
tion method used in Ref. 15 though both approaches use
filtering methods. This paper assumed that the only source
of error was the noise term with a variance proportional to
Planck’s constant. If that inhomogeneous noise term were to
vanish the observations would reduce to exact measure-
ments on a Newtonian system, which is not the case in Ref.
15. There the measurement was assumed to be proportional
to the quantum mechanical expectation and an inhomogen-
eous white noise process modeling the experimental error. If
the variance of this inhomogeneous process approached
zero, the observation would reduce to the quantum mechani-
cal expectation. The various expressions in these two papers
must therefore carry a different interpretation.

In Sec. IV the method is illustrated by two examples. We
apply the filtering formalism to estimate the unknown initial
momentum of a free particle by measurements on its trajec-
tory. This case is of interest because it is related to the uncer-
tainty principle. In addition we calculate the a posteriori
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probability density for two unknown parameters in a har-
monic potential. In Sec. V we introduce a condition neces-
sary for the existence of the Rao—Cramer lower bound®'° to
the covariance matrix of the estimator, and we show that it
can be calculated from the sensitivity equations of the quan-
tum mechanical wave function.

In Sec. VI it is shown that for a certain class of potentials
the estimator exists and is given by the solution to the Fuji-
saki-Kallianpur-Kunita integral equation. For the same
class of potentials we present the analytical form of the a
posteriori probability density for the unknown parameters.in
the quantal system using the extended Bayes formula.'! In
Sec. VII we summarize the paper and suggest an extension of
the a posteriori probability density derived in Sec. VI for the
case that the number of unknown parameters is infinite.

il. STOCHASTIC MECHANICS

This section briefly summarizes the relationship
~ between quantum mechanics and stochastic mechanics and
specifies the assumptions on the experimental observations
that make it possible to represent the estimation of unknown
parameters as a filtering problem. More detailed informa-
tion on the subject of stochastic mechanics can be found in
Refs. 1-8.

In a quantal system the probability p[x,s] Ax of finding
the position of a particle in a volume element Ax around the
point x in coordinate space at time s is equal to
plx.s]1Ax = |¢[x,5]|>Ax, where [ x,s] is the wave function
satigfying the Schrodinger equation i#(d/ds)¥[x,s]

= Hy[x,s] withxeR ™, H= — (#*/2m)A + V. The func-
tion ¥ = F(x) is the potential, A is the Laplacian in R ¥, and
p[x,0] = |[¢[x,0]? is the initial probability density. There
exists a stochastic variable x(s)eR ™ associated with the
probability density p[x,s] such that for any Borel set 4 in
RY,

plx(s)ed 1 = J;dx/o[x,s],

where p[ A] is the probability of the event A. The time evolu-
tion of the probability density p[x,5] may be obtained from
the Schrddinger equation, so the stochastic process defined
in (2.1) depends on the potential in the Hamiltonian H in a
complicated fashion.

The collection of possible trajectories on the interval
[0,5] is given by all possible realizations of the random vari-
able x(s’), s’€[0,s], and has a measure whose image at time s
is given by (2.1). It has been shown in recent years' that
the process x () satisfies the following stochastic differential
equation:

dx(s) =b[x(s),slds + o dw(s), 2.2)
where E[w(s)] =0, E[w(s)wT(s")] = |min(ss’),
o? = #i/m, and b(s) = b[x(s),5]: R Y- R " so that x(s) be-
comes a diffusion process. The drift term b[x,s] is related to
the wave function ¢ in the following manner:

bxs] = Re(%'%z;i]l) +1Im (%)

where V = (8 /9x,,...,d /dxy ). Notice that the wave func-

2.1)

(2.3)
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tion depends on the initial condition ¢,[x] so that the drift in
(2.3) contains all the information of the initial wﬁve func-
tion y¥,[x]. The probability density associated with the ra-
dom variable in (2.3) is therefore not only determined by the
initial distribution p[x,0] = |¢,[x]|? but also depends on
the phase of the initial wave function. Since ¥ often has ze-
ros, the drift term b[x,s] may have singularities so that the
stochastic equation (2.2) generally does not have a strong
solution. In Sec. VI we will elaborate on the existence of the
solution to Eq. (2.2) and its associated measure.

If a single experimental observation on a quantal system
is performed to determine the position of a particle at time s,
the measurement ideally results in a realization of the sto-
chastic variable x(s) defined in Eq. (2.2). Similarly, a con-
tinuous series of observations that do not disturb the particle
measure its trajectory over a period of time s, and the result is
equivalent to a realization of the random process
{x(s) ocys-

To demonstrate how filtering theory is now used to es-
tablish the parameters in the quantal system, consider the
wave function to be dependent on a vector of unknown pa-
rameters yeR X. They can reside in the initial wave function
or in the potential so that V= F(vy). As a consequence of
(2.3), the drift b{x,s] depends on y and can be written as
b = b[x(s),v,s]. The vector of parameters is time indepen-
dent so the combined equations for the vector ¥ and the
stochastic process x(s) can be written as

d

—v=0, 2.4
7 Y (2.4a)
dx(s) =b[x(s),y.s] + o dw(s), (2.4b)

which are usually referred to in system theory as state and
observational equations, where the parameter vector in
(2.4a) is defined as the (unknown) state of the system and
where the process x(s) is the observable variable. Using the
filtering theorems below, an estimate of the parameters y at
time 5 can be obtained from the realization {x(s') }o, <,

It is possible that the parameters y are influenced by
physical processes that have a random character and are not
part of the original model (e.g., the potential may be stochas-
tic). Another possibility is that some of the N processes
x1(8),....xx (8) in (2.4b) are unobservable and consequently
have to be added to the state of the system (2.4a). The en-
larged state is denoted y (s), and the state and observational
equations in their most general form become

(2.5a)
(2.5b)

dy(s) = h[x(s),y(s),s]ds + P dw,(s),
dx(s) =b[x(s),y(s),s]ds + o dw,(s),

where y(s)eR X and where h(s) = h[x(s),y(s),s]:
RX-RX. The matrix P is of appropriate dimension and
specifies the magnitude of the stochastic fluctuations while
w,(s) and w,(s) are independent Wiener processes of di-
mension K and N, respectively. The purpose again is to esti-
mate y(s) from the information {x(s)}oc, ;-

In Sec. III we introduce the equations of filtering theory
that are relevant for the solution of the state estimation prob-
lem posed in (2.4) and (2.5).
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lIl. STOCHASTIC FILTERING THEORY

Asis well known in the filtering literature, the minimum
variance estimate of the nonmeasurable variables y(s)
in (2.5a) is the a posteriori mean conditional on the
realization of the measurable variables x(s) on [0,s];
E [v(s) {x(5) Yo, ]- This estimator satisfies the Fujisaki-
Kunita—Kallianpur integral equation introduced below and
can be obtained from the a posteriori probability density,
which under more restricted conditions satisfies the
Kushner equation in Theorem IIL2.

We assume that in (2.5) the drifts h(s) = h{x(s),
v(s),s] and b(s) = b[x(s),y(s),s]: R ¥ - R X are such that

fdsE{h(s)]2<oo, jdsE{b(s){2<oo, (3.1)
O (4]

where the expectation E is over the random processes intro-
duced above. Then we have that the following theorem
holds.

Theorem IIL.1; Let F be the sigma algebra generated
by the stochastic process x(s'), 0<s'<s, and define the pro-
cess v,

dv, = dx(s) — E [b(s)|F}]ds, 0<s<t. (3.2)
Then if condition (3.1) holds, the estimator E [y (s)|F}]
for the state y(s) in {2.5a) given the realization
{x(s)}yey . €F* from (2.5b) satisfies the integral equa-
tl on 11-13

E[y()|FX] = E [v(0)]F,] + f dr E [h(r)|F?]
Q

+?}2-J:{E [v(m)b(r)T|FY]

— E [Y(D|F]E [b(D)|FX]" }dv,,
(3.3)

where F; is the sigma algebra generated by the random vari-
able x(0) = x,,. For the proof see Ref. 10, Theorem 8.1.

Notice that the existence of the estimator does not have
additional requirements on the sigma algebra F}. From
(3.1) it follows that u, €u,, and u, <p,, , where u.,, u,,
Hw, M, are the measures associated with the processes y (s),
x(s), w,(s), w,(s), respectively."' The inverse relation is,
however, not necessary for the theorem.

The conditional mean E [b(s)|F}] may be calculated
from the a posteriori probability distribution ply'.s]
=p[Y'|FI],v'eR %, i.e., the probability density of the state
v(s) given the observations x(s"), 0<s'<s. If additional re-
quirements are added to condition (3.1) it is possible to de-
rive the following equations, (3.4) and (3.5), for p[v',s].

Theorem II1.2: Assuming that (3.1) holds then under
certain restrictions on the operator L ¥ and the process v,
the density p[v',s] for the state y(s) in (2.5a) given the
realization {x (s)}(m, «s satisfies the following stochastic
equation™! 1%

dply',s] = L*p[vy'slds + (1/67)ply’s1{b(s)

— E [b(s)|FX]}dv,, 0<s<, (3.4)
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where

EDOIF] = [ avplyshxewsl.  35)
R

For a proof of the Kushner equation (3.4), see Ref. 11,

Chap. 8.

The first term on the right-hand side of Eq. (3.4) in-
volves the Fokker-Planck operator L * associated with the
stochastic equations (2.5a) and propagates the probability
distribution in time as if no information has been obtained.
The second part on the right-hand side of (3.4) contains the
information of the observations {x(s)}y., ., embedded in
the process v,. Equation (3.4) is a stochastic partial differ-
ential equation that has to be interpreted in the sense of Ito.

In Sec. IV we illustrate our approach by applying the
filtering method to estimate the unknown initial momentum
of a free particle and we provide an estimator for the un-
known parameters in a harmonic potential.

IV. APPLICATIONS

In the first example we obtain an estimate for the initial
momentum of a free particle [y in (2.4a) ] given an observed
trajectory in coordinate space {x(s) }o.,.,, where x(s) satis-
fies (2.4b), K = N = 1. A filter exists even if the initial prob-
ability density is not normalizable. In Sec. IV B we construct
the a posteriori probability density for the unknown param-
eters in a harmonic potential using similar information.

A. Estimation of the momentum of a free particle by
position measurement

Consider a free particle with the potential =0 and the
initial condition

Y[x0] = (4.1)

(8ym)? 26 #
then the wave function ¢ evolves in time as

1 1 exp { i(yx — y*s/2m) }
(&Jm)'? (1+is)'"? g
(x —ys/m)> 1 — is]
8 14ish
The distribution for the initial position of the particle,
|¥[x,0]]% is a Gaussian with a variance of i 5% and zero
mean, where the parameter y is the initial phase, or momen-
turm, which is assumed to be unknown. From (2.3) it is easi-
ly seen that for this choice of initial condition the drift b x,s]
becomes linear so that (2.4b) reduces to

dx(s) = [y/m + a(s){x(s) — (y/m)s}lds + o dw(s),
(4.3)

Ylx,s] =

xexp[ - (4.2)

where

a(s) =k[(ks — 1)/ (K’ + 1], k=#/m&. (4.4)

Since y is time independent, Eq. {2.4a) holds, and iden-
tifying (4.3) and (2.4b) it is clear that ¥ can be estimated
from the realization {x(s)}o.,., by means of applying the
general methods of Sec. III. Both equations (2.4a) and
(2.4b) are linear and it can be shown that in this case the
distribution for the parameter ¥ conditional on the experi-
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mental data {x(s') Yo, is a Gaussian, which can be speci-
fied by its first two moments.”!!* Substituting this Gaus-
sianinto Eq. (3.4) leads to two equations describing the time
evolution of its mean and variance, known as the Kalman-
filtering equations.’’!® From these we find that the optimal
estimate #(s) = E[y] {x(s')}ocs<.] of ¥ and its variance
V, (s) = Var(P(s)) satisfy

mV, (s)[1 —sa(s)]

d =
P (x) 7
x[dx(s) {L=sa(s)) 55y a(s)x(s)],
(4.5a)
e
;?—;V,,(s)=-— ””:;) [1—sa(s)]2 (4.5b)

The equation for the estimator is linear and can be
solved in terms of the observed sequence x(s'), 0<s'<s once
¥, (s) is known. The equation for the variance of the estima-
tor, (4.5b), is of the Riccati type and is independent of the
data due to the linear nature of the estimation problem. It
can be easily solved to yield

1

V(s)—-( A fdr[l—ra(r}}) s

where V,(0) =V, As time approaches infinity it is easy to
see that
V,()-V, = [—1-+§3-( + 1)] l
v > ly, # ’
so that after an infinite amount of measurements the vari-
ance of the optimal estimate approaches a finite limit. The
initial phase can therefore not be determined without error.
 The q priori knowledge about ¥ is represented by the
initial estimate #(0) and variance V,,. As the available fore-
knowledge decreases, ¥, «, we see from (4.7) that
V,(s)1V, < o; hence, even in the case that no initial infor-
mation is available (¥, = « ), an estimator exists and has
finite variance. In this case, V_ =0.6 #/5° so that the final
variance is inversely proportional to the variance of the free
particle at the beginning of the measurement process. Final-
ly, if the position of the particle at time zero is very accurate-
ly determined, say 5% €#°/V,, then we see that ¥ =¥, so
that almost no information can be gained from the observa-
tions, and if the initial position becomes infinitely precise,
&0, it becomes impossible to obtain any information (V,
= Vp).

The uncertainty principle states that it is impossible to
determine the momentum and the position of a particle both
to an arbitrary degree of accuracy. The result derived above
is therefore consistent with quantum mechanics, and it
shows that even from an infinite sequence of measurements
on the position of a particle, no information can be obtained
about the momentum y if the initial position of the particle is
known to infinite accuracy. So far we assumed, obviously,
that the system was not meaningfully disturbed by the posi-
tion measurements, which is not entirely correct; precise
measurements will generally alter the quantal system.
Usually only one measurement can be performed at a fixed
time or the time interval for measurement remains short.
The result above, however, is of interest as a theoretical limit

(4.6)

4.7)
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and further work in this area‘is warranted.
A closely related case is when we consider the wave
function of a free pamcle such  that ¢[xs]
= exp[ — 4x + iBs], where 4 = y/ma’ B = y*/(mo)?,
the unknown parameter y being the initial momentum of the
particle. This probability density is not normalized but the
associated stochastic process (2.4b) still exists. Indeed the
drift b[x,s] for the process equals b[x,s] = y/m and the a
posteriori probability density becomes a Gaussian with the

following mean and variance:

pi5) = E [y|F7] = m B =2O)
§ (4.8)

2
Var(p) = (27; —-ﬁ-’-"—)” )
s

It is interesting to notice that in this case the variance
approaches zero as s— oo . Hence, in constrast to the previous
example, for the case of the free partlcle where no informa-
tion exists for its initial position (8— « ), the initial momen-
tum ¥ can be determined exactly if the position measure-
ments are continued for an infinite amount of time. Since y is
related to the initial momentum we find that the initiajener-
gy is proportional to °. An estimate of the initial energy of
the particle is then E [*|F]/2m and can be calculated
from (4.8). In fact,

E [AIF;)/2m = m[{x(s) — x(0)}* 4 #}/2s% (4.9)

Notice that the energy estimator is not just given by 'i‘/(t)z/
2m but also contains a term that decreases with time like 1/5°
and is proportional to 7.

B. Estimation of a harmonic pdtentlal from position
measurements

A more complicated situation is where the particle
moves in the presence of a potential well, where in this case
the potential is a one-dimensional harmonic oscillator
V = y,x* + ¥,x, with the parameters being unknown. From
the realization of the associated random variable we now
construct the estimates for the two parameters as follows.
Suppose that the initial wave function has the general form
¥[x,0] = expldox* + Box + Co + i{Eyx + Fp}], then
from the Schrédinger equation we see that ¢[xs]
= exp[Ax® + B(s)x + C(s) + {E(s)x + F(s)}], where
the functions B(s), C(s), E(s), and F(s) satisfy the follow-
ing (linear) differential equations:

4 Bis) +20°E(s) =0, 2 C(s) + 0?B(s)E(s) =0,
ds ds

%F(s) —20*{B(s)*} =0, (4.10)

d
—E
s s+

where o? = #i/m, A? = y,/2mo*, B(0) = B,, C(0) = C,,
E(0) = E,, and F(0) = F,. These equations can be found
from substituting the wave function into the Schrédinger
equation.
Using (2.3) the associated drift may be shown to be-
come b{x,;s]=24x + R, where 4=A[y], R=Rly]
= B(s) + E(s), Y = (¥1,¥2). The functions B(s) and E(s)

Y2 _ 2524B(s) =0,
p (s) X
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and the constant 4 generally depend on 7, and 7, in anonlin-
ear fashion. As usual the time independent parameters in ¢
are identified with the state of the system (2.4a) and then
using this drift, Eq. (2.4b) becomes linear. The a posteriori
probability density for vy, given the observations p[v'[F}],
satisfies Eq. (3.4), and using the method of characteristics®
the solution is given by

plYIF:]

= Z[Y’]exz’[zng; b(r)dx(r) — %Q'Jo dr b(’r)z]

X {f dyz[y’]exp[;lzj; b(r)dx(r)

1 S —1
2 o]
zOJL o

where b(7) = b[x(7),¥',7] is the drift term introduced
above and where the probability density z(vy’) is the a priori
information on the parameters.

For example, suppose that y, = 0 so that only the un-
known constant ¥, needs to be estimated. As time increases
the optimal estimate approaches the maximum of the den-
sity (4.11) (the maximum likelihood estimate) so that

(4.11)

7108) z2ma4{(fsx(s’)dx(s’) — fo(s’)R [s’]ds’)
0 0

'S —-132 4 1 -2
><(2Jx(5')2 ds’) ] zzma“[————Jx(S')zdS]
o s Jo
(4.12)

as time approaches infinity. The average (1/s)
X f x(s")?ds'—0?/44 for large s and has a variance that
decreases as 1/s. From Eq. (4.12) it then follows that as time
increases ¥; converges fo the actual parameter ¥, (P — as)
and that its variance also decreases with the time of observa-
tion.

Expression (4.11) is more generally valid for drifts
b(s) = b[x(s),y’,s] that satisfy the requirements of
Theorem 3.2 but the usual assumptions introduced to vali-
date the Kushner equation do not hold for (2.4b) or
(2.5b)."" We will say more about the use of this equation in
Sec. VIL

In Sec. V we present a lower bound to the covariance
matrix of the estimator, which is particularly useful in deter-
mining its long-time behavior.

V. ASYMPTOTIC ANALYSIS

It can be shown that if certain conditions are satisfied
the covariance matrix of the estimator of the parameters
¥1o¥x 1 (2.4a) asymptotically approaches the inverse of
the associated Rao~Cramer lower bound as time increases to
infinity.*'® The rank of the Rao—Cramer matrix also shows
whether the observations under consideration can determine
all parameters independently and the diagonal elements of
the inverse of the Rao—Cramer bound generally provide in-
formation on the rate with which information is gained on a
parameter as further observations are obtained.

Using Ref. 10 the Rao—Cramer inequality for the covar-
iance matrix of a multidimensional estimator can be found;
however, the existence of the Rao~Cramer lower bound ma-
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trix is not guaranteed in the present case. In this section we
introduce a condition that will ensure the existence of the
Radon-Nikodym derivative necessary to calculate the lower
bound matrix so that the derivation of the inequality can
proceed analogous to the method in Ref. 10. We also show
that the Rao-Cramer matrix can be calculated from the sen-
sitivity equations of the Schrédinger equation.

Henceforth we assume that the drift b(s) = b[x(s),y,s]
is obtained from the wave function ¢ = ¥[x,y,s] for every
veR ¥ and that it is a square integrable random process for
every choice of vector parameter y. This means that

ftds E'[b{x(s),v,5]°] = fdsf dezz;'/{sz log ¢|*
0 4] R

:stf dx|Ve < o0, (5.1)
o RY

where E’ is the expectation only over the random variable
{x(s)}oe;c, in contrast to (3.1), where the expectation E
extends to all stochastic variables. The equalities can be
found from calculating the drift term using (2.3) and substi-
tuting the result into (5.1). This condition on b(s) is equiva-
lent to requiring that the drift be generated by a wave func-
tion associated with a finite energy for every choice of yeR *.

An important consequence of (4.1) is the following
theorem, related here without proof.*°

Theorem V.1: Consider the observational equation
(2.4b) and define dn(s) = o dw(s), s>0. Let the measure
1, be associated with the process x(s) that satisfies (2.4b)
with b(s) = b[x(s),v,s]. Then, for the Radon-Nikodym
derivative (du,/du, )(%,Y,s) of the measure u, with re-
spect to the measure u, , we find

du,
du

(N,7,8) = exp[% T, (b(s)) — 2—25’[)5{7 b(T)z],

M

0<s<y, (5.2)

where the drift is evaluated as b(s) = b[n,vy,s] and where

Fs(b(s)) = p-limn [X{fédrb(r)z«‘ o} fz” [n]T-dTl(T)]

o]

(5.3)

Here z,, is a sequence of functions such that

p-lim,, [X{ygdsb<r)2<oc} fd’r(b('r) — z")z] =0 (54)
0

with y, (x) = 1if xed and is O elsewhere. Also, p-lim, de-
notes convergence in probability, i.e., for random variables
&, &, p-lim, §, = £ isequivalent to the statement that for all
8>0,p[lé, —&|>8]-0asn—co.

In addition, for s, 0<s<¢,

dp,
du

(X,7,8) = exp{% j b(r) Tdx(r) — -;%2— f dr b(7)2]
(¢] Lo (]

n
(5.5)

if b(s) is evaluated as b(s) = b{x,y,s].

Now the existence of the Radon-Nikodym derivative
has been assured by condition (5.1), the Rao-Cramer lower
bound matrix can be constructed. Define a vector of func-
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tionals v; (x): {X(s')}o«“ —R, j=1,...,K, where

J . du,
v,(x) =—1Io
{( ) 37, g .,
and let the matrix Z be defined as Z = E'[vv” ]. An estima-
tor of the parameter vector y is a functional ¢eR ¥,
¢;: Fi-R%, j=1,.,K, whereF7 isthesigma algebra of
events {x(s) }ocy<, With a covariance matrix R = E [$¢” ]
— E[®]E [4]7. Using the arguments in Ref. 14 it can now
be shown that for any collection of functionals
b = (¢y,-..0x) (i.e., any collection of estimators) we have
that the matrix combination R — AZ~'AT is positive
definite, or R —AZ~'AT>0. Here A=E’'[¢v"]
—E[$)E'[v]T=E'[¢vT] since E'[v] = 0.
Using (5.6) we find for the matrix elements of the Rao—
Cramer matrix Z,

D)y =E[vivi] =£2—E’U;d1'£b(r)r Hj b(T)],
1 k
(5.7)

so that the matrix Z can be exf)ressed in terms of the wave
function via (2.4a). Indeed, we have
d a2
—b,(s) = (Im + Re)
9; x; OV
which can be calculated from the sensitivity equation

mi(ﬁ'ﬂ) __F Ny 4 (59
ds \dy; 2m gy, a; 9y,

If the covariance matrix of an estimator asymptotically
approaches the inverse of the Rao—Cramer lower bound ma-
trix Z, as time approaches infinity, the estimator is referred
to as asymptotically efficient. Some conditions necessary for
asymptotic efficiency are known,>'° but no work on this par-
ticular case has been done.

Though the drift terms in (2.4b) and (2.5b) may be
highly nonlinear, we show in Sec. VI that an estimator for
the parameters exists if the potential V satisfies certain gen-
eral requirements.

x,v5), j=1..K, (5.6)

log ¥[x,s], (5.8)

VL. PROOF OF EXISTENCE OF THE PARAMETER
ESTIMATOR

In this section we argue that the optimal estimator for
v(s) in (2.5a), given a realization of (2.5b) on the interval
[0,s], exists if all drift terms in (2.5) are generated by a
Rellich potential or, more generally, if the total (average)
energy in the quantal system is finite. We also show the exact
form for the a posteriori probability density of the parameter
vector vy in (2.4a) given the realization {x(s)}o,, from
(2.4b). In Sec. VII it is speculated that a similar analytical
formula can be derived if (2.4b) is cast in a functional form.

It was proven by Carlen® that a (weak) solution to (2.2)
exists if the potential Vin the Schrédinger equation is of the
Rellich type. This means that an outcome space, a measure,
and a sigma algebra exist such that (2.2) holds if the poten-
tial ¥ has the following properties.

(1) As a multiplication operator, the domain of ¥ con-
tains the domain of the operator A, the Laplacian in R ~.

(2) For some a <1 and b in R, for all functions f that
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belong to the domain of A, we have || Vf||<all}af || + & || £l
(||l is an L ? norm). Many common potentials are Rellich
type potentials. For instance, the Coulomb potential is a Rel-
lich potential and in R * all square integrable potentials or
finite potentials are of the Rellich type (see also Sec. VII).

Via the Kato-Rellich theorem and Stone’s theorem,
Carlen® established the existence of the Markovian propaga-
tor for the backward equation associated with (2.2) and it
was also shown that (i) the condition (3.1) holds for the
drift term (2.3) if ¢ is generated by a Rellich potential, and
(ii) a measure u, and a sigma algebra F exists such that
x(s) satisfies Eq. (2.2). The process x(s) is a square integra-
ble Markov process with a jointly measurable version. The
image of the measure under x(s) has the probability density
plxs] = [¢lxs]1{*

The existence of the measure u, and the sigma algebra
F7 [i.e., the collection of events generated by the process
x(s) ] for Rellich potentials could also have been established
by relating them to the Wiener measure u,, and the sigma
algebra F7 [i.e., the collection of events generated by the
Wiener process w(s)] using Theorem V.1. For Rellich po-
tentials condition (3.1) is satisfied so this theorem implies
that the measure p, of the process x(s) in (2.2) is absolutely
continuous with respect to the measure u,,, i.e., fy €iy;
where dq(s') = o dw(s'), 0<s'<s, consequently they can be
related via the Radon-Nikodym derivative (5.2). It has
been shown® that the stochastic process x(s) does not cross
the singularities in the drift b[x,s]. The collection of paths
that has this property has a positive Wiener measure so the
sigma algebra F¥ generated by the process x(s') is a proper
sub-sigma algebra of F.

The conclusions above can be applied to (2.5a) and
(2.5b) so if the drift terms b(s) and h(s) are jointly genera-
ted by a Rellich potential it is true that a solution to the
stochastic differential equations (2.5a) and (2.5b) exists.
Condition (3.1) is also satisfied, so from Theorem 3.1 it fol-
lows that the estimator (s) = E[y(s)|F7] exists and that
it satisfies the Fujisaki-Kallianpur—Kunita equation (3.3).
This remains true for any drift term h(s) in (2.5b) satisfying
(3.1). To use the arguments above in order to establish exis-
tence of the estimator of y in (2.4a) it is not enough to re-
quire that b(s) is generated by a Rellich potential. To satisfy
condition (3.1) we must also require that the @ priori prob-
ability density 7(y") is such that

E [jds b(s)z] = fds dm(y')E'[b[x(5),¥'s]?] < .
0 0

(6.1)

Notice that for Rellich potentials it is true that the integral
over time in (6.1) exists, but this does not imply that the
integral over the measure dm(y') is necessarily finite. It is
interesting to see that if the drift terms b(s) are generated by
Rellich potentials for every choice of y we have that condi-
tion (5.1) holds so the Rao—Cramer matrix introduced in
Sec. V can be constructed.

By analogy it may be expected that the solution (4.11)
to the Kushner equation (3.4) provides an explicit form for
the a posteriori probability density of the parameters v in
(2.4a), but it is not easy to apply the theorem since its condi-
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tions are difficult to check.!! Nonetheless, the next theorem
shows that to obtain an a posteriori density similar to (4.11)
no more is required than that the drift term in (2.4b) be
generated by a Rellich potential for very y and that 7(y') is
such that (6.1) holds. For the proof of the theorem we will
make use of the extended Bayes formula.'!

Theorem VI2: We assume that the drift
b(s) =b[x,y',s] is generated by a Rellich potential for all
v'eR ¥ and that the a priori density is such that (6.1) holds.
In addition, let the drift depend continuously on vy’ and let
F% be the minimal sigma algebra containing all the sigma
algebras associated with the solutions to (2.4b) for all y'.
Then we have that for any function g: R*-R, with
Elgty)]1 =s5dr(v)gy') < w,

E[g(¥)|FS] = Lkdvr(v')g(v’,X)p(v’,r),

where

(6.2)

ply',r) = exp [;21— T, (b(s)) —iLdT b(T)T'b(T)]
1
d ! —T.(b
XURK W(v)eXP[Ol s(b(s))

S —1
—#Ldrh(r)nb(ﬂ” (6.3)

on [0,r], where I';{b(s))=T,(b[r(s),y',s]) is defined in
(5.4) and (5.5).

Let dw(s) = o dw(s), 0<s<t, for the Wiener process
w(s) in (2.4b) and let iy be the measure associated with
n(s) and i, ., be the measure associated with the stochastic
process that is the solution to (2.4b) for the drift
b[x(s),y’,s]. If it is true that

p[f dr[bin(n),y,711?< oo] =1 (6.4)
0

for all ¥’ so that Hxiyy ~fq (see Ref. 11) for all ¥', then
(6.2) holds with the function p (y',r):

p(Y'r) =exp {% Lb(r)r-dr(v')

— ﬁ J:d’rb(T)T'b(T)]

X {f dm(y') exp [iJ-b(T)T'dI‘(T)
rK b

s —1
—ﬁfodrb(r)nb(r)”

with b(7) = b[r(7),¥',7].

Proof: Let x(v',5) be the solution to (2.4b) for a given
vector y'eR ¥, and let x(v') = {x(y',s') }gcs«,- The process
x(v’,s) has a continuous version because it is a square inte-
grable martingale. Let y1, ., and F}” be the measure and
sigma algebra associated with the process x(y') and let
dnw(s') = o dw(s'), 0<s'<s, with o? = #i/m, where w(s) is
the standard Wiener process in (2.4b). The continuity of
x(¥y’,s) also implies that FX*” is a separable sigma algebra.
Denote the minimal sigma algebra that contains all the sig-
ma algebras F*? by F and assume that it is complete.

(6.5)
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Because the drift is continuous in ¥’ and because all algebras
F* are separable, we find that the F{ is also separable.

Consider the combined process (y',x(y’,s')). The out-
come space of the combined processis R X X C [0,s]", where
C [0,5]" is the collection of N-dimensional continuous func-
tions on [0,s], and the minimal sigma algebra associated
with this outcome space is given by F(R X)X F?, where
F(R ¥)isthe Borel algebra of R “ and F*, which is the sigma
algebra associated with the collection of stochastic processes
x(v,s). Also, F(R*)X F! is the minimal sigma algebra
containing all sets 4 X B, AcF(R ¥) and BeF %, which is as-
sumed to be complete. The sigma algebra F(R X)X F* is
separable because F(R *) and F* are separable. The mea-
sure /., on the algebra is determined if it is defined on all sets
A X B, since its extension to the whole sigma algebra
F(R*) % F* is now unambiguous. Let 4 X BeF(R*) X F",
then we may define

Uy (A XB) =

y'ed
:J dﬂ(Y’)J d,uvx(y') (.l'),
y'ed reB

where the measure 7 (") is the initial probability density for
the parameters ¥,...,¥x. Since for any value of y’ the sto-
chastic process x(y’,s) is associated with a Rellich potential
we see that (6.1) holds for any b[x(y',s),vy',s]. Hence

dr(y)P(x(y)eB)

(6.6)

p[fdrb [(x(v,m),y,71*< oo] =1 (6.7)
0

for all y', which implies that u, .., <u,,. Equation (6.7) can
then be written as

Ay
foye (A X B) =f dﬂ(v’)J dp,, (1) 2 (159
y'ed reB d,u“

(6.8)
using the Radon—Nikodym derivative (5.2) [replacing x by
x(Y)1.

From (6.8) we see that the conditional probability den-
sity Q[B,y'] is given by

d.ux(y')

(r,s). (6.9)

Q1By'] =f it (1)
reB

n

By construction this conditional probability density is regu-
lar and from (6.9) follows that for ally'eR*, Q [ -,v'] Ll .
Applying Lemma 7.4 in Ref. 10 we obtain

du..,
E [g(v)|F:] = (L:"T(Y')g”') = (r,s))

n

d ! -1
x(f dv(v')—’“"‘—(‘”—)(r,s)) , (6.10)
RK 7

#Hn

where the Radon-Nikodym derivative is given by (5.2) with
b(s) =b[r(s),y’,s]. The function [,(b(s)) is again defined
by (5.4) and (5.5) so (6.10) now establishes (6.3).

If, in addition, (6.4) holds then u, ., ~Mu, so that the
function I' (b(s)) assumes the form of the integral over its
argument, which reduces (6.3) to (6.5). Q.E.D.
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Vii. CONCLUSIONS

In this paper we assumed that the experimental observa-
tions on quantal systems can be represented as a realization
of the random variable x(s) associated with the probability
density |#[x,5]|% where the wave function ¥ satisfies the
Schroédinger equation. Using stochastic mechanics and some
results from filtering theory, we established by simple exam-
ples that a realization of this random variable over a contin-
uous period of time can be effectively used to estimate the
unknown initial momentum for a free particle or the un-
known parameters in a harmonic potential. In the more gen-
eral case that the potential in the Schrodinger equation is a
Rellich potential for all the possible values of the unknown
(time independent) parameters, an optimal.estimator for
the unknown parameter can be constructed if the initial esti-
mated average energy is finite. We explicitly calculated the
analytical form of the a posteriori probability density of the
parameters in this case using the extended Bayes formula. If
the state of the system (2.5a) is nondeterministic, the a pos-
teriori probability distribution is difficult to construct and
the Kushner equation is then only analytically soluble if the
potential is of the type ¥ = ax* + bx + ¢ with appropriate
initial conditions.”

It would be especially interesting to extend the estima-
tion procedure to scattering phenomena, where only the ini-
tial and final realizations of the stochastic processes can be
observed. Filtering techniques have been developed for the
case that the observations can only be measured on a restrict-
ed interval and this can be applied to scattering problems.
Unfortunately the asymptotic properties of processes de-
scribed by stochastic mechanics are not well understood (for
some results in this direction see Refs. 5, 8, and 18) and some
of the notions in scattering theory (for instance, the S ma-
trix) do not translate easily to stochastic processes.

One of the approximations that has been developed in
the context of filtering theory is especially useful for the pa-
rameter estimation problem formulated in this paper. The
inversion of the observational data from (2.4a) and (2.5b)
depends on the variance o. Since this constant is small (it is
proportional to #i/m) the behavior of the estimator in the
asymptotic limit o— 0 becomes of interest. This small noise
approximation is rather well developed in the system litera-
ture,”*%?° and consequently can be fruitfully applied to pa-
rameter estimation in quantal systems.

The proof of Theorem 6.2 in Sec. VI suggests an exten-
sion to the countably infinite dimensional case where the
entire potential is unknown. The state and observational
equations then assume the form of the functional analog to
(2.5a) (6V(x) = 0), where the drift simply depends on the
potential b(s) = b[x(s),V,s]. It is necessary to specify in
what space the potential exists and in view of our previous
discussion, it would be natural to search for a potential of the
Rellich type. In R * the space of such potentials is well known
tobe L2 + L =, i.e., any Rellich potential in R 3 can be writ-
ten as the sum of a functionin L? = { f|f dx f< w }and a
function in L © = { f|sup,|f| < w}. To reproduce the
Bayesian argument of Theorem 6.2 for the finite dimensional
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case, we have to determine a sigma algebra on the space of
Rellich potentials to take the place of the Borel algebra
F(R *) in Theorem 6.2. The a posteriori probability distribu-
tion changes into a measure on the space of Rellich poten-
tials conditional on the sigma algebra FX [i.e., the collec-
tion of events generated by x(FV,s'), 0<s'<s, for all
VeL? + L =]. By analogy to Sec. VI, the conditional mea-
sure u[V|Fi] [F; is now the sigma algebra of events
x(V) = {X( VJ')}o<s'<s, VeL?+L <], can be symbolically
written as

du[V|F;] = exp[l‘,(b [r(s),Vs])

1 (2
- fo b [V,r(T),T]dr]dy[V]
X[ f . exp[I‘,(b [r(s),V.s])

S -1
——zl—sz[V,r(T),T]dT]dﬂ[V]] (LD
0.

where du [ V] is the a priori probability distribution for ¥and
where T,(b(s)) is defined in (5.3) and (5.4) with
b(s) =b[r(s),¥,s]. This expression is Bayesian in nature
and provides the a posteriori probability measure for the
functional state, conditional on a realization {r(s')}ocs ;-
We leave more formal investigations along these lines to fu-
ture research.
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A method for inverting observations on quantum mechanical systems to obtain estimates of
unknown parameters residing in the Hamiltonian is presented. The quantal system is
represented in matrix form with respect to a chosen basis, and it is assumed that the associated
expansion coefficients are truncated to a finite dimension. The uncontrollable laboratory noise
will be modeled by means of an inhomogeneous white noise process so that the experimental
observations are represented as stochastic variables satisfying a stochastic differential equation.
It will be assumed that measurements obtained from an experiment are now equivalent to a
realization of these stochastic variables. It is known from filtering theory that the minimum
variance estimate of the unknown parameters in the quantal model is now given by the
expectation of the unknowns conditional on this realization. This estimator can be calculated
analytically from the associated a posteriori probability density if the original quantal system
does not contain any random elements. This probability density for the unknown matrix
elements is calculated, and it is demonstrated that for a full Hamiltonian matrix the asymptotic
variance of the parameter estimator decreases as a third power in time and a fourth power in
the initial conditions. Some differences with the minimum least-square method are mentioned,
and a few issues of numerical implementation are discussed.

I. INTRODUCTION

Many problems in physics and chemistry require invert-
ing experimental data in order to obtain estimates of un-
known potentials. Most rigorous approaches to inversion
problems are based on the analytical properties of the wave
function. These methods effectively assume that the wave
function is a measurable quantity, which is not the case since
the wave function determines the amplitude of the particles
but is not itself an observable. Using filtering theory we de-
velop a new approach for inverting experimental data that
explicitly allows for the observables to be quadratic forms of
the wave function, thereby encompassing true measurables.

Our method is based on a combination of matrix me-
chanics, introduced in Sec. I1, and filtering theory, presented
in Sec. I11. Briefly, the time-dependent wave function is first
expanded in the usual fashion with respect to an appropriate
basis. The resulting expansion coefficients satisfy a set of
linear differential equations and depend on unknown initial
conditions and unknown parameters residing in the Hamil-
tonian matrix. The set of equations for the quantal system is
usually infinite, but we consider only a finite subset in keep-
ing with most practical procedures for solution. The experi-
mental measurements are proportional to the weighted qua-
dratic combinations of the expansion coefficients and are
often influenced by additional physical processes that are
not explicitly included in the model. These extraneous ef-
fects may be modeled by means of an additive white noise
process so that the experimental observations become a sto-

* Current address: Department of Applied Mathematics, Twente Universi-
ty of Technology, Enschede, The Netherlands.
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chastic variable. Our assumption will be that a particular
measurement on the quantal system is given by a realization
of this stochastic variable.

It is well known in filtering theory that the minimum
variance estimator for the unknown parameters and initial
conditions from the available information is given by the a
posteriori mean of the unknown quantities conditional on
this realization.'™ The optimal estimate, also referred to as a
filter, satisfies a stochastic integral equation®® and the a pos-
teriori probability distribution necessary to calculate the
conditional mean satisfies a stochastic partial differential
equation known as the Kushner equation.'”” The latter
equation can be solved analytically if the equations for the
quantal system are entirely deterministic.

Under appropriate circumstances, the covariance ma-
trix of an estimator asymptotically approaches the inverse of
the Rao—Cramer lower bound introduced in Sec. II1.'* We
show that if the equation for the expansion coefficients is
deterministic this matrix can be obtained from the sensitivity
equations of the quantal model. In Sec. IV the filtering meth-
od is used to construct the estimator for the unknown pa-
rameters in the Hamiltonian matrix and we obtain informa-
tion on the asymptotic variance of this estimator from the
associated Rao—Cramer lower bound matrix. Finally, in Sec.
V the paper is summarized and the conclusions are present-
ed.

This approach is different from the parameter estima-
tion method developed in Ref. 8 using stochastic mechanics,
though both approaches use filtering methods. Here we as-
sumed that the measurement is proportional to the quantum
mechanical expectation and an inhomogeneous white noise
process modeling the experimental error. If the variance of
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this stochastic process approaches zero the observation will
reduce to the quantum mechanical expectation, which is not
the case in Ref. 8. There the only source of error was the
noise term prescribed by stochastic mechanics with a vari-
ance proportional to Planck’s constant. If that inhomogen-
eous noise term were to vanish, the observations would re-
duce to exact measurements on a Newtonian system. The
various expressions in these two papers must therefore carry
a different interpretation.

Section II introduces the assumptions on the quantal
system and the experimental observations that allow the esti-
mation of the residing unknown parameters to be represent-
ed as a filtering problem.

Il. THE QUANTUM MECHANICAL SYSTEM

The quantal system will be represented in matrix form
where the expansion vector v(s) is truncated to the finite
dimension L, while the experimental observations are as-
sumed to satisfy a stochastic differential equation. The un-
known parameters in the Hamiltonian matrix and the initial
conditions for the expansion coefficients must then be esti-
mated from a realization of this stochastic variable. The
method below can be generalized to infinite dimensional sys-
tems, but the estimation problem is more manageable if the

basis set is finite.

Hence the expansion vector v(s) R” satisfies the follow-
ing equation:

ifi iv(s) = Hv(s), (2.1)

ds

where elements of the vector v(s) are the projection of the
wave function ¢, (v), =(4,|¢), i=1,..,L, with ¢,
j=1,...,L, being members of an orthonormal basis set, The
Hamiltonian matrix H is related to the operator H via
(H); = {¢:|H |¢;), ij = 1,...,L. At best only limited infor-
mation is assumed to be available on the potential, therefore
some or all of the matrix elements of the matrix H are un-
known. The Hamiltonian matrix includes all relevant phys-
ical effects, except those arising due to uncontrollable labo-
ratory measurement processes.

We further assume that the observations z(s)eR™ on
the system with the variables v(s) are given by the usual sum
of the weighted squares of the expansion coefficients
v,(8),...,0; (5) plus laboratory noise that has been modeled
by means of a Wiener process. The random terms incorpo-
rate all the physical processes that influence the experimen-
tal observations z(s) which are not included in the model
(2.1). As aresult of this assumption the experimental obser-
vations z(s) satisfy an M dimensional stochastic differential
equation

dz(s) = G(s)ds + P dw,(s) , (2.2)

where (G(5)), = 2[;_ | [Ow0; (9)0}(9) ], k= 1,...,M, with
w,(s) being an M dimensional Wiener process. The matrix
elements Oy, i,j = 1,....L, k = 1,...,M, prescribe the rela-
tion between the & th observation and elements of the vector
v(s), while elements of the matrix P indicate the magnitude
of the stochastic fluctuations. Typically, the matrices O,
are symmetric in the indices 7 and j for all k = 1,...,M, so that
the function G(s) in (2.2) is real (this is the case assumed
here).
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The unknowns in the system are the initial conditions of
the expansion coefficients v(0) in (2.1) and a vector of un-
known parameters a = (a;,...,@x ) in the Hamiltonian ma-
trix. Casting Eq. (2.1) in terms of real variables, writing
v(s) = v()V + iv(s)®, v(s)VeRE, v(s)PeR", and defin-
ing v'(s)T = (v(s) VT, v(5) @7, aT), the vector v'(s) can
be easily shown to satisfy

d

-‘-l-s-v’(s) =H'()V'(s) =H(V'())V(s), 2.3)
where
0 H(a) 0
H(a) =] —H@) o0 0l. (2.4)
Al o 0 0

Notice that the matrix H' only depends on the last X vari-
ables of v'(s), which coincide with the parameters. Equa-
tions (2.3) and (2.2) are usually referred to as state and
observational equations, where v'(s) is the unknown state
and where z(s) incorporates the observational data. The
main assumption of our paper is that an experimental obser-
vation on the quantal system over a time s is equivalent to a
realization of the random variables z(s') on the interval
[0, 5] and an application of the filtering methods below will
yield an estimate for the initial conditions of the state
v'(0) = @ given this realization. As a result, this procedure
yields an estimator for all initial conditions 8,,...,8 ,, and the
unknown parameters 6,;  ;,...,60,; , x in the Hamiltonian
matrix.

It is possible that the state v’ (s) in (2.3) is influenced by
additional physical processes that affect the potential in the
Hamiltonian matrix H or influence the vector v(s) in (2.1)
(e.g., the system could be subject to external fluctuations,
etc.). These processes are not part of the nominal equations,
and in an effort to model this we assume that Eq. (2.3) is
perturbed by another Wiener process w, (s). In that case, the
state and observational equations (2.3) and (2.2) change
into the following stochastic differential equations:

dv'(s) = H'(V(s))¥ (s)ds + Q(v' (s))dw,(s) , (2.5a)
dz(s) = G(s)ds + P dw,(s), (2.5b)

where w, (s) and w, (s) are independent Wiener processes of
appropriate dimension. The magnitude of the fluctuations
that perturb the state v’ (s) is given by the matrix Q, which in
most physical cases depends on the expansion coefficients.
For instance, if the potential contains random elements, Q
depends linearly on the state v'(s).

Section III briefly summarizes the basic filtering theo-
rems necessary to find an estimator for the unknown initial
condition v'(0) given a realization of the stochastic variable
z(s) satisfying (2.5b).

lll. STOCHASTIC FILTERING THEORY

It is well known from filtering theory that the minimum
variance estimate of the state v'(0) in (2.5a) given the real-
ization 4, = {z(s)},.,,, Where z(s) satisfies (2.5b), is
equivalent to the mean of v'(0) conditional on the realiza-
tion A4, .>* The a posteriori probability density necessary to
calculate the optimal estimator satisfies a stochastic partial
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differential equation known as the Kushner equation, which
can be easily solved if the state equation (2.5a) does not
contain noise (i.e., if Q = 0)."* We also introduce the Rao-
Cramer lower bound matrix, which will be used to describe
the asymptotic behavior of the covariance matrix of this pa-
rameter estimator. If Eq. (2.5a) is deterministic, the Rao—
Cramer matrix can be obtained from the sensitivity equa-
tions of (2.1).

The optimal estimator for the initial conditions v'(0)
given the realization 4, = {z(s)},.,., is the functional ®,
of A, that minimizes the variance of the difference
A=TrE[(v(0) — ¥ )}{v'(0) —¥,)"] and is given by
@, = E[{v'(0)]4, 1.7 Here Tr denotes the matrix trace op-
eration and £ is the expectation over all random processes.
The estimator is often referred to as a filter and may be ex-
pressed as ©, = [ dx xp[x|4, ], where p[x]4, ] is the a pos-
teriori probability density of the state v(0) conditional on the
realization 4, . Under the reasonable condition

fdsE[F(s)2]<oo, J,dsE[G(s)2]<oo, (3.1)
0 (4]

and some additional requirements on the drift functions, it
can be shown'>*’ that the density p[x|4,] satisfies the
Kushner equation

dp[x|A4, ]
=p[x]4,][(G(s) — E [G(s)[4,])"U~"(dz(s)
—E[G(s)]4,]4ds)], (3.2)

where U = PP7. This equation has to be interpreted in the
sense of Ito and contains implicit terms like E[G(s)]4, ].
There are a number of occasions in which the solution
for (3.2) can be obtained analytically. For instance, if the
functions G(s) and F(s) in (2.5a) are, respectively, linear in
the variables v'{s) and z(s), an explicit solution for the esti-
mator can be found.>*”® Equation (3.2) can also be solved if
the matrix Q in (2.5a) becomes zero. In that case the a pos-
teriori probability density for the state v'(0) = 0 given the
realization 4, from the solution to Eq. (2.5b) is given by

g,[x]
plx4,] = ——, (3.3)
[xid.] Jdx q,[x]
where ¢, [x] satisfies the equation dg, [x)

=g, [x]1G(s)"U™ ! dz(s) and is usually referred to as the
unnormalized probability function."* The initial condition
for this equation, g,[x], is the probability density containing
the initial information on the parameters 8. Solving the
equation for the unnormalized density yields

q,[x] =qs{X(0)}epr —%(G(r))TU“G(r)df
0

+ (G U~ 'dZ(T)J ,
where
dX(r)
T

=H[X("], 34

G(s) = G[X(s)] with the final conditions X(s) = x. The
integral must be evaluated in the sense of Stratonovich.
The Rao-Cramer inequality yields a lower bound that
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gives information on the asymptotic behavior of the covar-
iance matrix of an estimator’* and can be found as follows.
Let dn(s) = P dw,(s) and assume that z, and p, are the
respective measures of the stochastic processes n(s) and
z(s). The latter process depends on 8 via the observational
function G (s). Consequently, the Radon-Nikodym deriva-
tive® of the measure u, , with respect to the measure Hy»also
depends on 8 and will be denoted I'(s, 8). Its existence is
assured by (3.1).* Consequently, the set of functionals v,
j=1,.20 +K,

v =2 {log T'(5,6)} (3.5)

7 a@j b4 )

is well defined and has a covariance matrix Z = E’[vw7],
where the expectation £’ is solely over the stochastic variable
{z(s')}oey, (the matrix Z therefore depends on 0). Let
A=E'[6vT] —E[6T]E'[v"] = E'[dv"]; then, for any
estimator ¢,: {z(s') }o.yc, =R 22 ¥ of the parameter vec-
tor @ with covariance matrix R = E[¢¢” ] — E[]1E[d]7,
we have that the matrix combination R — A(Z) ~'A7 is
positive definite or R — A(Z) ~'A7 >0. From this point on
we shall assume that under the present conditions as time
increases to infinity, the estimators become unbiased (A—1)
and the covariance matrix R asymptotically approaches the
inverse of the Rao—Cramer lower bound matrix Z~ !, Some
of the conditions necessary for this asymptotic behavior are
known"** but more work on the general case still needs to be
done. For the proof of this version of the Rao~Cramer bound
see Ref. 8.

There is an interesting consequence of this inequality. If
Eq.(2.5a) is deterministic, i.e., if Q) =0 then the Rao-
Cramer lower bound for the estimator of the initial condi-
tions reduces to

M
(Z)pk = Z Ua;

]J‘S s 3G, {(s"y G, (s")
(¥}

= 3, 30,
M s J Y
-3 U;;lf ds 3 2D
ab=1 o k=1 dv,

3G, (s') v, v,
dv, 96, 96,
where U " is the inverse of the matrix U = P7P. The partial
derivatives of the expansion coefficients with respect to 6 can
be obtained from the sensitivity equations of (2.1).

Section IV uses the filter and the Rao—Cramer lower
bound matrix to find analytical information on the estimator
of the initial conditions and unknown parameters in a deter-
ministic quantal model.

(3.6)

IV. APPLICATIONS AND EXAMPLES

Using (3.3) and (3.4) we can derive the analytical form
for the estimator of the parameters v'(0) = @ in (2.5a) given
a realization {z(s) },.,.,, where z(s) is the observational
vector defined in (2.5b). We obtain the estimator in the case
that the time-independent Hamiltonian matrix is diagonal
and we calculate the Rao-Cramer lower bound matrix for
the full Hamiltonian.

Let P =yl and partition the vector X(s) = (X,(s),
X,(5), X5(9)), X, (5),X,(s)eR”, and X,(s)eRX. Substitut-
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ing the observational function G(s) into the expression for the unnormalized probability density, we find that

2
1] = go[XOlerp| — 1> 5 [z ok,,[(x,(r)),(xm),+(x2(f)),(xz(f>),]] dr
~1Lij=1
[ 3 Ou DU + EaDKe(D) ez (1) ] (41)
kBl
where
f—xm = H(X(n)X(r) = H'(Xs(r)X (), (4.2)

with the final conditions X(s) =
probability density.
Equation (4.2) can be solved to yield

(X,(5),X,(5),X;5(5)) = (X1,X5,X3) = X, X;,X,€R", and x;€R¥. Here g,[x] is the initial

cos[H(x®) (r — 5)/#] sin[Hx®) (r—s)/%] © X,
X(7) =| —sin[H(x®) (7 —$)/A]  cos[H(x®)(r—5)/#) Of |x,], (4.3)
0 0 { X,
I
which determines the functions X, (7), X,(7), and X,(7) in + cos[x{¥ (7 — 5)/#] %7,
(4.1). The a posteriori distribution for 0, p[x|4,],
x€R * +X, conditional on the realization 4, = {z(s') }o.,c,» X,(7) = x.

can subsequently be obtained from (4.1) and (3.3). The
construction shows that the probability density g, [x] must
be evaluated for every point xeR %L+ X, which means that the
characteristic functions X, (7) and X,(7) have to be calcu-
lated for every final condition x. If the Hamiltonian matrix
contains many expansion coefficients or many unknown pa-
rameters so that X or L become large, then a large amount of
computer memory will be required. To reduce the necessary
parameter space, it is possible to derive the marginal distri-
bution for the unknown parameters in the Hamiltonian ma-
trix by integrating p[x|A4, ] over the first two sets of variables
and normalizing the resulting distribution with respect to
the remaining variables x*®. In most applications the number
of parameters in the potential is usually small.

If the noise term in the state v'(s) in (2.5a) is nonzero, a
simple solution such as the one above cannot be readily ob-
tained, but many analytical results for estimation on a noisy
staté can be found in Refs. 1, 4, 9, and 10. In addition, many
numerical algorithms and approximations have been devel-
oped for this case and can be brought to bear on the estima-
tion problem above.

Asan example, let us assume that H is a diagonal matrix,
H = A, where (A); =6;a;, i,j = 1,....L, so that the un-
known parameters are the diagonal matrix elements a;,
j=1,...,L, and the 2L initial conditions »(0)?, v(0)?. From
(4.3) we see that the functions X,(7), X,(7), and X;(7)
become

(X, (1), =cos[x> (7 — s) /] xV

+ sin[x{* (7 — 5)/A] x{?,
(4.4)

Xy (7)) = —sin[xP (7 — s) /] -x{V
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The unnormalized distribution is consequently a density in
second and fourth powers of the variable x', x® while the
variables x® appear as arguments of trigonometric func-
tions. This density is subsequently substituted into (3.3) to
find the a posteriori probability distribution for 8. Aithough
this example is quite simple, it serves to illustrate the basic
principles; a fully coupled Hamiltonian matrix would re-
quire numerical analysis.

It is difficult to analytically reduce this distribution, but
it is possible to obtain information on the asymptotic behav-
ior of the associated estimator via the Rao—Cramer lower
bound introduced in the Sec. III. In the present case the
matrix is given by (3.6), where

(). -

Suppose for the moment that the tensor Oy; is a diagonal
matrix for all k, then (3.6) and (4.5) show that the diagonal
elements of the matrix Z become

L a .
Y Oy [Re(;a;— v, (s))vj (s)] .

ij=1
4.5)

(Z)2L+p2L+p‘

fdf
k==l

because |v; (7)|% i = 1,...,L, is a conserved quantity. Hence
no information on the parameter can be derived from the
observations if both the Hamiltonian matrix is diagonal and
if the matrices O, are diagonal for every k = 1,....M.

Consider now an example where the elements O, are
diagonal except for the elements O, i =k’ — L,k', k' + 1,
j=k’'—1,k’, k' + 1. Then we find

2
2% oo =0,

p'=

(4.6)
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1 M d
(Z)2L+p2L+p =;2—- 0 di;l (9(1

5l g

i Oki{lui(T)lz}]z

i

3 Lj=k'+
67/211——k -1

i#j
k=1,.M

so that the rate at which the information is gained is propor-
tional to the fourth power of the initial conditions and is
cubic in time. The rate with which information is gained on
the parameters a does not depend on the value of the param-
eters, but only on the initial expansion coefficients 8,,...,6,,
and on the off-diagonal elements of the matrices

Oy» k = 1,...,M. It is easy to see that this is also true if all the
O,; are nonzero as long as H is a diagonal matrix. The off-
diagonal matrix elements of the lower bound matrix Z in this
example are not necessarily small, so that the variance is not
proportional to the inverse of the diagonal elements but the
exact matrix elements can be easily calculated.

In the more general case where H is a full matrix we
determine the matrix Z as follows. Introduce matrices O,,
k = 1,..,M, such that (O,); = O, for all k,i, j. Then from
(4.5) we have forallp = 1,...,2L 4+ K,

e =
80 ),
Let §;, j=1,.,L, be the eigenvectors of H and let Tj»
Jj=1,...,.L, be the corresponding eigenvalues. Since H is real
and symmetric the eigenvalues are real. The solution to
(2.1) can be written as

L

> ¢ exp(in;s)§; ,
j=1
where the constants ¢; are such that 2 _1¢;6 = v(0).
Hence

(VTOkv*) .

(4.8)

0 k=1

S M
J
X [¢ic; exp[i(n,. — )7 (£]OEN ]
L L
x<5?0k§t>1]-

Using only the dominant terms we see that as time becomes
large,

(Z) =~ _J dr

[c ¢, expli(n, —7,)7]

(4.10)

=1 9
Z= [Tzc”' 36, V)

k=1 ..... M

— 7, (§0.&, )2} :

(4.11)

69
so that in the general case the matrix Z is proportional to the
fourth power in the initial conditions and the third power in
time. Since the behavior of the covariance matrix of the esti-
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K’
k'
kz OkU{Re[v (05, (0)r exp[ir(a, —q 1106, —6,)}
Kk’
it

[Oku{(f’ﬁ,) + (O 0L, )+ [0 (60, )7 — (6,837,

2

4.7)

]

mates is inversely proportional to the matrix in (4.11), we
conclude that for the full Hamiltonian, the variance of the
parameter estimates is inversely proportional to the third pow-
er of the time and the fourth power of the initial conditions.

V. CONCLUSIONS AND SUMMARY

This paper proposes to invert experimental data of
quantum systems by first representing the observations as a
realization of a stochastic variable whose stochastic charac-
teristics incorporate laboratory uncertainties and then ap-
plying filtering theory to estimate the unknown parameters
from this realization. The drift term in the observational
equations was bilinear in the expansion coefficients to in-
clude real measurables. The minimum variance estimator
for the parameters was calculated analytically for the case
that no noise in the quantal system was present while the
associated Rao—Cramer lower bound showed that informa-
tion on the parameters was gained as a third power in time
and a fourth power in the initial conditions.

The examples in Sec. III showed that the a posteriori
probability distribution requires calculations involving the
complete variable space whose dimensior is twice the num-
ber of expansion coefficients plus the number of unknown
parameters. The total number of points necessary to estab-
lish a probability distribution numerically obeys a power law
in the number of parameters, so approximation methods or
efficient computer storage techniques will become necessary
in the case of a large system. It is advantageous to restrict the
calculations as much as possible to a marginal distribution of
the parameters in the Hamiltonian, and in many practical
problems the potential does not contain many unknowns.

The random element introduced in the model equations
(2.5a) can occur in many different ways. Random fluctu-
ations in macroscopic systems can be combined with quan-
tum mechanical systems'’; for instance, the potential may
contain a random term. In addition, there exists a relation-
ship between ergodic theory and quantal systems that intro-
duces stochasticity.'?

In the inversion of the observational data the estimation
process depends on the variance of the fluctuations 3°. In
many applications this constant may be sufficiently small so
that the behavior of the estimator in the asymptotic limit
¥ -0 becomes of interest. This small noise approximation is
rather well developed in the systems literature™'*' and con-
sequently can be fruitfully applied to parameter estimation
in quantal systems.

An issue we left aside here is the estimation of the noise
level, which so far was assumed to be known. Several algor-
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ithms have been proposed to estimate the noise level concur-
rently with the estimation of the state.! Such adaptive tech-
niques have been developed in system theory and can be
applied to the parameter estimation problem in Sec. II.

The technique suggested in this paper has certain advan-
tages over the more conventional method of minimum least-
squares fitting, In addition to the fact that it avoids the usual
problem of finding the absolute minimum via a searching
method, it also espouses a special philosophy that encour-
ages one to think in a different way about the model-experi-
ment situation. For instance, in the stochastic estimation
setting one does not have to be restricted to Gaussian noise
since filtering methods have been developed for Ornstein—
Uhlenbeck processes, Poisson processes, and some other sto-
chastic processes. This representation also enables the test-
ing of models* using likelihood ratios and can be fruitfully
used in the quantum mechanical setting to determine
whether or not the current model needs to be amended. Fur-
thermore, designing an optimal experiment is equivalent to
the optimization of an observational function in order to
maximize the gain in information, and this has been devel-
oped especially in the area of communication theory.* Final-
ly, it should be added that a considerable number of approxi-
mation techniques have resulted from the filtering
philosophy and are abundant in the literature.

One central simplification in our arguments relied on
the Hamiltonian matrix H and the observational vector be-
ing of finite dimension. For the general case where both are
infinite dimensional, it is easier to rewrite the problem in
terms of the wave function in the Schrddinger equation and
assume that the measurements are proportional to the

1800 J. Math. Phys., Vol. 28, No. 8, August 1987

weighted square of the wave function perturbed by a Wiener
process. Although filtering methods for such distributed pa-
rameter systems have been developed, the details are more
involved and will be left to future research.

ACKNOWLEDGMENTS

The authors acknowledge support for this research from
the Office of Naval Research and the Air Force Office of
Scientific Research.

'Stochastic Systems: The Mathematics of Filtering and Identification and
Applications, Proceedings of the NATO Advanced Study Institute held at
Les Arcs, Savoie, France, 22 June-S5 July 1980, edited by M. Hazewinkel
and J. C. Willems (Reidel, Dordrecht, 1981),

2M. J. Kushnér, SIAM J. Control Optim. 2, 106 (1964).

3G. Kallianpur, Stochastic Filtering Theory (Springer, New York, 1978).

“R. 8. Liptser and A. N. Shirayayev, Statistics of Random Processes I & I
(Springer, New York, 1977).

M. Fujisaki, G. Kallianpur, and H. Kunita, Osaka J. Math. 3, 19 (1972).

SE. Wong, Stochastic Processes in Information and Dynamical Systems
(Krieger, New York, 1979).

7Z. Schuss, Theory and Application of Stochastic Differential Equations
(Wiley, New York, 1980).

8]. G. B. Beumee and H. Rabitz, J. Math. Phys. 28, 1787 (1987).

9A. Gelb, R. A. Nash, C. F. Price, and A. A. Sutherland, Applied Optimal
Estimation (M.L.T.U.P., Cambridge, MA, 1974).

10y, E. Benes, Stochastics 5, 65 (1981).

1F, N. H. Robinson, Noise and Fluctuation in Electronic Devices and Cir-
cuits (Clarendon, Oxford, 1974).

12G, M. Zaslavsky, Phys. Rep. 80, (3), 157 (1981).

3R Katzur, B. Z. Bobrovsky, and Z. Schuss, SIAM J. Appl. Math. 44, 591
(1984). ’

0. Hijab, Ann. Probab. 12, (3) 890 (1984).

J. G. B. Beumee and H. Rabitz 1800



Perturbative results from the 1/N expansion for screened Coulomb

potentials
C.H. Lai®

Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

(Received 7 October 1986; accepted for publication 25 March 1987)

The energy eigenvalues for the Hulthén, Yukawa, and exponential-cosine screened Coulomb
potentials are calculated in the 1/N expansion. States with up to three nodes in the wave
functions are considered. We obtain the perturbative results up to the order of A 8, where A is

the screening parameter.

I. INTRODUCTION

The 1/N expansion,'~ where N is the number of spatial
dimensions, is a powerful tool in solving the Schrodinger
equation for spherically symmetric potentials. Its nonper-
turbative character (in the sense that is not an expansion in a
coupling constant) and the simple algebraic recursive com-
putations involved are definite advantages. Furthermore,
approximate analytic expressions for the wave functions can
also be obtained along with the energy eigenvalues within
the same calculational procedure.

Several investigations*™® of some common potentials
have been carried out with the 1/N expansion technique, and
remarkably accurate results are obtained. It has also been
pointed out that a shift in the natural expansion parameter
k = N + 2I, where / is the eigenvalue of the N-dimensional
orbital angular momentum, can be exploited to yield simple
analytic expressions and improved convergence for the ener-
gy eigenvalues.>®

In this paper, we present a detailed study of a class of
screened Coulomb potentials'® within the framework of the
1/N expansion. The method used is a variant of the standard
1/N expansion,’ and, when implemented in an algebraic ma-
nipulation program, provides an extremely simple way of
computing the perturbative approximation to the energy
eigenvalues and wave functions. States with up to three
nodes in the wave function are considered, although only the
energy eigenvalues are presented here.

In Sec. II, we briefly review the 1/N expansion for
spherically symmetric potentials. Formulation for states
with m nodes in the wave function is given in Sec. II1. Our
modified expansion for the case of screened Coulomb poten-
tials are pointed out in Sec. IV. We then discuss in Sec. V
results for the Hulthén, Yukawa, and exponential-cosine
screened Coulomb (ECSC) potentials. Finally we present
the conclusions in Sec. VI.

The computations presented here were carried out using
the algebraic manipulation program REDUCE'! running on
an IBM 3081-KX2 computer.

* On leave from Department of Physics, National University of Singapore,
Kent Ridge, Singapore 0511, Republic of Singapore.
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Il. THE 1/N EXPANSION FOR THE NODELESS STATES
OF A SPHERICALLY SYMMETRIC POTENTIAL

The radial Schrodinger equation for a spherically sym-
metric potential in NV spatial dimensions is (we use units such
thatfi=c=m=1)

2

[ S+ L) HEN=D Ly oo

=E¢(r), (2.1)
where Vy (r) is the N-dimensional potential. Setting

U(ry =r'N"D24(r), (2.2)
we have

2

-2

=Ey(r), (2.3)
where

k=N+2—A, V(r=Vy(r)/k?,

and A is a suitable shift, which will be discussed later. In the
large k limit, the energy eigenvalue can be approximated by

k2E-I=k2(1/87 + V(ry)), (2.4)
where r, is the minimum of the effective potential
1/87 + V(1) .

Defining now

=~ 1 1—A
V(ir Ekz[——(l — )
N=k3p P
><(1 - 3;A>+?f(r)] —k2ED,
EsE—Kk?E"?, x=r—r,,
we write the wave function in the form
U(r) =e"™ .
Equation (2.3) then becomes
—[U"(x) + U (0)U'(x)]+¥V(x) —E=0. (2.6)

The prime denotes differentiation with respect to x. We then
substitute the expansions

(2.5)

U'(x) = i u'(x)k ",

n= —1

(2.7
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Vo= 3 ek, (2.8)

n= —2

E ™ =

o0

E= (2.9)

n= -1 .
in (2.6) and demand that the equation be satisfied order by
order in k. The following recursive algebraic equations are
obtained:

#V00)u "V (x) — 26-2(x) =0, (2.10)
= (x)u(x) + ECD =04 ;u('”'(x) =0,
(2.11)
and
V()P (x) + E™W —P™(x) =0,

P(")(X)Eﬁ(")(X)

(2.12)

_% 4™ (x) + i u(/’(x)u""‘”(x)] ’

j=0
n=40,1.2,... (2.13)
Each of these equations can be solved consecutively to obtain

u(x) = — 23 (x), (2.14)
ECY=59(0) — -0y, (2.15)

u(o)(x) = (i-,(-l)(x) - iu(_”'(O) _ E(—l))/u(—l)(x) ,

(2.16)

and
Em™_pwm), (2.17)
"V (x) =(P™(x) — E ™) /u-"x), (2.18)

forn =0,1,2,... . With the choice A = 0, and for 5™ (x) =0,
n>1, the scheme of Mlodinow and Shatz' is recovered. An-
other scheme®* is to choose A such that E " vanishes, and
hopefully the energy eigenvalue series will then have im-
proved convergence. The physical results are obtained upon
setting N = 3 in the energy and wave-function series.

IIl. FORMULATION FOR STATES WITHm NODES IN THE
WAVE FUNCTIONS

For states with m nodes in the wave function, we write
explicitly
U () =1, (x)e" (3.1)

where £,, (x) is a polynomial of degree m. Substituting this
into the Schrodinger equation gives

fu V) =3[UL(x) + (UL ()] —E,. }

—frm XU, (x) —4fr(x)=0. (3.2)
We then make the following 1/k expansions:

Vo = 3 i@k, (3.3)

n= —2
E.,= 3 E,™k-n, (3.4)
n= —1
Up)= 3 4, ™xk-", (3.5)
n= —1

and
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fa@ =x"4 3 £k ", (3.6)
where "
fu® () = :'iol @, ™x, m>1. G.7)
Looking at Eq..(3.2) order by order 1/k, we find
'~ V(X V() — 20 2(x) =0, (3.8)

U TV, () + B,V —F0(x) +du,, "V (x)
+mx™~ 'y, “V(x) =0, (3.9)
and forn =0,1,2,...,

xm[um(—l)(x)um(n+l)(x) +Em(n) —P,,,""(x)]

— "ilfm(j)(x) [Qm(n—.l)(x) _Em (n—j)]
j=1

n+41
+ z fm(j)’(x)um(n—j)(x) +%fm(n)'(x)=0,
j=0
‘ , (3.10)
where

P, (x) =5"(x) —%[u,.. ™'(x)

+ 2 u,.."’(x)u,,,‘""’(x)], (3.11)
j=0 .

Q.. ®(x) = P, M (x) — um(—l)(x)um n+D(yy,
(3.12)
The equations are again solved consecutively. We shall dem-
onstrate the solution for the first few orders. From Eq. (3.8)
we have
u,"Vx) = —J2i™7(x), (3.13)

and since u,, ‘"~ "(0) = 0, we can differentiate Eq. (3.9) once
with respect to x and evaluate at x = 0 to obtain

E, =V =9"90) — (m + Du, ""(0). (3.14)
We then have
4, O(x) = xDm“"(x);:nu,,.“”(x) , (3.15)
XU, (x)
where
D, " Y(x)=0""(x) — ju,, "V (x) —E, V. (3.16)

Notice that although u,,~"(x) vanishes at x =0, the
expression for u,, ®(x) is actually regular at x = 0.
To the k ° order, we have

xm[um(—l)(x)um(l)(x) +E'm(0)_Pm(0)]
__fm(l)(x) [Qm(—l)(x) _'E"'m(——l)] + mx™— lum(o)(x)
_fm(l)l(x)um(—l)(x) —{m(m - l)xm—z =0.

3.17)
Evaluating at x = 0 gives
84, 9(0) + 6
ot} = mtn O 0 (3.18)

mum(— 1)’(0)

where §,,, is the Kronecker delta. Differentiating the equa-
tion with respect to x / times and evaluating at x = 0 allow
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atl) to be determined. Once /)’ (x) is constructed, the only
remaining unknown function in the equation is u,,"(x),
which can then be solved. The same procedure of solution
can then be applied to the next order in 1/%.

IV. THE SCREENED COULOMB POTENTIALS

For the class of screened Coulomb potentials under con-
sideration (the Hulthén, Yukawa, and exponential-cosine
screened potentials), we have the power series expansion

vin=-23 vy, 4.1)
rjg-o

where A is the screening parameter. Scaling the variables Z
and 4,
Z=kZ/4 A=1/k7,

we then have the modified potential in N dimensions,

4.2)

Ve = S vk -, 4.3)
LY
where
2y = —1Z /r, (4.4)
v@(r) =g PZA W, j=0,1,2,.., (4.5)

with 7% being constants. The effective potential in the
large k limit in this case is 1/8/* — Z /4, and the minimum
occurs at r, = Z ~ . The general potential (2.8) can then be
constructed and the energy eigenvalues and wave functions
obtained through Eqgs. (2.14)-(2.17) on Egs. (3.8)~(3.10).

It is obvious from the above discussions that in the pres-
ent scheme the screened Coulomb potentials are all taken to
be approximated by the Coulomb potential in the large £
limit. The screening effects are then computed as higher-
order corrections in the 1/k expansion. The advantages are
the explicit and simple expressions can be obtained for the
minimum position 7, and the function '~ "(x), which is the
starting point of the recursive calculational procedure. The
price that has to be paid is that only perturbative results are
obtained.

We perform the general computations using the alge-
braic manipulation program REDUCE'! and results for the
individual cases are obtained by assigning appropriate nu-
merical values to the V)’s in (4.1). As a check of our pro-
gram and to verify that the standard 1/N expansion is intrin-
sically nonperturbative, we calculate the energy eigenvalues
and the associated wave functions for the limiting Coulomb
case using the same REDUCE program and setting the screen-
ing parameter 4 to zero. We find, for N =3,

£ = § B0k,

j= =2

(4.6)

where m is the number of nodes in the wave function, and

E, 0= —4Z*(— 1Y +3)(A—1+2m)y~+2,
4.7)

for 0< j<25. We believe that (4.7) will continue to hold for
j>25. Writing £, = — (A — 1 + 2m)/k, we then have

E, — __;_szzz G+ D&Y, (4.8)
=0
which, for |{| <1, is
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E, = —{Z%*1/(1 - £)?]

mn

- —=Z*2m 41+ 1)Y= —Z?%/2n%,

N3

(4.9)

which are the exact expressions for the energy eigenvalues
for the Coulomb potential, with n = (m + [ + 1) being the
principal quantum number. This result is independent of the
choice of the shift parameter A. Of course, with
A,, = 1 — 2m, the energy eigenvalues are then given simply
by

E,=E"%%*= —}Z*(N+214+2m—1)*

~ —1ZY(m+ 1+ 1) = —Z%2n?,

N-=3
as expected.

Apart from the normalization factor, exact r depen-
dence of the reduced radial wave functions, rR,; (r), is also
reproduced in the calculation. Explicitly, we find for Z = 1,
A, =1-2m,and N=13,

U, o(x)= —x/n+nn[(x —n*)/n*],
U,1(x)=(x+n)

X{ —x/n+ (n—1)In[(x + n?)/n]},
(4.12)

(4.10)

4.11)

U, _,(x) =4(2x* + 6nx — n* + 6n?)
X{—=x/n+ (n—2)In[(x — n?*)/n?1},

(4.13)
U,-3(x)
=4[2x* + 12nx* — 3n*(n — 10)x — Tn* + 30n°]
X{ —x/n+ (n—3)In[(x —n*)/n*]}, (4.14)
which, when exponentiated, and recalling that
ro=3(3+2/—-A,)=n?, (4.15)

give the correct » dependence of the reduced radial wave
functions for the 1s through 4f states.

V.RESULTS FOR THE HULTHEN, YUKAWA, AND ECSC
POTENTIALS

The constants 7*” in (4.5) for the Hulthén, Yukawa,
and exponential-cosine screened Coulomb (ECSC) poten-
tials are listed in Table I. Analytic expressions for the N = 3

TABLEI The constants 7 for the Hulthén, Yukawa, and ECSC poten-
tials.

Hulthén Yukawa ECSC
7® i 1 1
7? - —1 0
7 0 +4 -
7 + zo — % +4
7 0 + 2 b
710 R — e 4]
72 0 + e + o
7 tbm i ~ b
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TABLE Il Analytic expressions for the energy eigenvalues as power series
in the screening parameter 4.

(a) Hulthén potential

E,=— (172" + A —ji*A% n=1234
Ep=—j+R—pA P At
Ey= -4+ U—8A2— A — A%~ 1agpd®
Ey=—{+W P —g4° — 3A° — 545 A°
Ep=—h+U—PA7 -  —4A° —agmi®
Ey=—h+U—R7—gA° g1 ° 140 ®
Ey=—%+WN—§>—92* )6 uggen®

]

(b) Yukawa potential

Ey= —J+A-Q+ A +HA° —g2°
+ AT —gapAt

Eyy= —3+A =312 4+74% —1311% + 1864 ° — 2394 ¢
4 Ml T _aasgLs) 8

Ey,=—}+A—A2+54° — A% + 14407 — 64 °
+HIWAT — 2gBA

Ey,=—f+A—FA7+ 917 —qpAt + sped®
—BHIIAC 2108 T e ] B
= —htA—FAT 43047 —BPA 4 2027
— 40016 4 2677517 . 256551 B
Ey=—h+A—34A%+212° - 1pa s 4 20994 °
— MBS 4 677 97047 — Snggae]
Ep= —%+A—1242 4+ 1084% — 17164 4 + 38 1604 °
— 999 5844°
Eyp= —4+A—3A%+ 1001 — 163044 + 36 1444 °
— WA RY0] T — 2600 40} ®
Epyg= —H+A—3A% +844% — 142804 431 2484°

— 8179364 © 4+ 23 637 44047 — 739 863 2804 °
Ey= —4+A—~94% +604% 105044 4217444 °

— 567 6644 ° + 16 028 4804 7 — 495 437 6804 ®

(c) ECSC potential

E = —j+A-A'+ 4 % —gd°®
+ 447 — At

Ep= —}+A4—144% £ 5504 — 9615 —a3p81
+65gnA 7 — im0 8

Ep= —j+4—104% 43504 — 5645 — 1592 °
+ RJOAT — e ] B

Ey= —4+A—694° v uppt —upps

— 22799916 1 1989 44147 — 141319654 8
Ey= —h+A—604°+ 94524 — 313

— 230954 © 4 aegs65] 7 3AZEIIIA S
Ey= —h+A—424° 4 g1 4 11pA 5

—ADAC 4 IS T — M Ys]

TABLE I (Continued.)

Ey= —%+4—2164"% + 31204 — 190084 °
— 1199 1044 ¢

E, = —%+A—2004°% 4280044 — 16 5764 %
— MRE1C | o] T — i) ®

Egy= —h+A—1684°+21844% — 120964 °

— 9103361 ¢ 4+ 37023 23247 — 656 936 7044 ®
Ey= —4+A4—1204% 4 132014 — 63364

— 578 5604 ¢ 4- 20 720 12847 — 328 472 3204 8

|

energy eigenvalues as a function of the screening parameter
A are given in Table IL. In our calculations we have chosen
the units with m =fi=c=Z =1, and a shift parameter
A,, = 1 — 2m for the m-node state is adopted. As discussed
in Sec. IV, this choice allows the Coulomb limit result to be
reproduced at the E ‘~? level. In most cases, the calculations
are carried out in high enough orders (in 1/k) to ensure that
convergence to order A & has been achieved. For the three-
node 4s state however, only results correct to A ® are obtained
due to computer memory limitations.

It has been pointed out in Ref. 12 that the energy levels
of some screened Coulomb potentials have an asymptotic
series in A, indicating that any finite-order perturbation cal-
culation cannot be expected to yield results of arbitrary ac-
curacy in such cases. The Padé approximant method'*!* has
been particularly successful in circumventing this diffi-
culty.'>~'8 In our present study, we shall only perform simple
iterated Shanks transformations' on our results as a check
on their convergence. ‘

For the Hulthén potential, exact expressions'® for the
energy eigenvalues of the / = Ostates are reproduced, where-
asforthe! #0states, weagree with Ref. 18 up toA . Numeri-
cal values for these eigenvalues are given in Tables ITI-V,
along with results from the other calculations. The values
E 12 and E 6 are, respectively, eigenvalues correct to the
twelfth and sixth orders in A, The E 8 are values computed
from the energy series given in Table Il and are correct to the
eighth order in . The E 12, E 6, and the Padé approximant
values are all taken from Ref. 18. Good agreement over a
range of values of 4 with the Padé approximant results is
particularly encouraging. Convergence does not pose a
problem in this case except when the screening parameter 4
is close to the critical values.

TABLEIII. Energy eigenvalues for the 2p states of the Hulthén potential in
atomic units.

Present calculation
A E12 Epase E8 Egi
0.05 —0.101043 —0.101043 0101043 —0.101043
0.10 —0079179 —0.079179 0079179 -0.079179
0.20 —0.041 886 - 0.041 886 -~ 0.041 886 — 0.041 886
0.30 —0.013784 ~0.013790 - 0.013759 —0.013785
0.35 -0.003720 —0.003779 - 0.003588

—0.003 739
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TABLE IV. Energy eigenvalues of the Hulthén potential for the 3p and 3d states in atomic units.

Present calculation

A E6 Epae E8 E shanks
0.025 3p - 0.043 707 - 0.043 707 —0.043 707 —0.043 707
3d — 0.043 603 — 0.043 603 —0.043 603 —0.043 603
0.050 3p - 0.033 165 ~ 0.033 165 —0.033 165 —0.033 165
3d - 0.032 753 — 0032753 —0.032 753 —0.032753
0.100 3p - 0.016 053 —0.016054 —0.016 054 —0.016 054
3d - 0.041 481 —0.014 484 —0.014 483 — 0.014 484
0.150 3p - 0.004 437 — 0.004 466 — 0.004 455 — 0.004 464
3d -~ 0,001 239 — 0.001 391 —0.001314 —0.001 375
TABLE V. Energy eigenvalues of the Hulthén potential for the 4p, 4d, and 4f states in atomic units.
Present calculation
A E6 EPadé E8 EShﬂnks
0.025 4p - 0.019 949 —0.019 949 ~ 0.019 949 —~ 0.019 949
4d — 0.019 846 — 0.019 846 —0.019 846 —0.019 846
4f —0.019 691 —0.019 691 —0.019 691 —0.019 691
0.050 4p —0.011 058 —0.011 058 —0.011058 —0.011058
4d —.010 667 — 0.010 667 —0.010 667 — 0.010 667
af - 0.010 061 —0.010062 —0.010062 — 0.010 062
0.075 4p - 0.004 619 —0.004 622 — 0.004 621 —0.004 622
4d — 0,003 824 —0.003 834 ~0.003 831 - 0.003 834
4f - 0.002 528 —0.002 556 —0.002 545 —0.002 554
0.100 4p — 0,000 718 — 0.000 754 - 0.000 736 - 0.000 751

TABLE V1. Energy eigenvalues of the Yukawa potential for the s state in

TABLE VII Energy eigenvalues of the Yukawa potential for the 2s and 2p
states in atomic units.

alomic units. Padé approximant Present calculation
A E[6,6] E16,7] Eg E shanks
Padé approximant Present calculation

A E[6,6] E[6,7] E8 E ks 0.05 2s —0.08177 —008177 ~008177 —0.08177

2p — 008074 008074 —~0.08074 —0.08074
0.10 — 0.407 06 — 0.407 06 — 0.407 06 — 0.407 06
0.20 —0.326 81 —0.326 81 —0.326 83 - 0.326 81 0.10 2s —0.049 93 —0.049 93 - 0.05044 —0.04991
0.25 —0.290 92 —0.290 92 - 0.29107 - 0,290 92 2p —0.04653 —0.04653 004692 —0.04652
0.50 —0.148 12 —0.148 12 —0.200 84 — (0,148 12
0.80 —0.044 71 —0.044 70 ~ 2.705 69 — 0,044 75 0.20 2s —0.012 11 —0.012 11 - 0.186 91 — 001155
0.90 — 0.024 33 —0.024 31 ~— 7.082 05 — 0.024 39 2p —0.004 18 —0.00404 —0.13686 — 0.003 41
1.00 —0.010 32 —0.01027 — 16.862 31 - 0,010 42
1.05 — 0.005 60 — 0.005 53 — 25.204 52 - 0.005 73 0.25 2s - 0.003 41 —0.003 39 - 1,12200 —0.00211
1.10 —0.002 35 —0.002 25 — 36.969 07 - 0.002 51
1.15 — 0.000 54 —0.00041 — 53.295 67 --0.000 73 0.30 2s — 0.000 17 — 0.000 05 -~ 5.059 22
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TABLE VIIL Energy eigenvalues of the Yukawa potential for the 3s, 3p,and 3d states in atomic units.

Padé approximant Present calculation

i E[6,6] E[6,7] E3 Egppnrs
0.025 3s "—0.03433 —0.034 33 —0.03433 —0.034 33
3p —0.03408 —0.03408 —0.034 08 —0.034 08
3d ~0.033 57 ~0.03357 —0.033 57 —0.033 57
0.050 3s —0.01935 - 0.019 35 —~0.01974 —0.019 36
3 —0.018 56 —0.018 56 —0.018 90 —0.018 56
3d —0.01692 —0.016 92 —-0.01715 —0.01692
0.080 3s —0.007 78 —0.007 78 —0.028 07 —0.007 85
3p — 0.006 35 — 0.006 33 —0.024 38 — 0.006 31
3d —0.003 25 —0.003 24 —0.01578 —0.003 25
0.10 3s —0.003 21 —0.003 21 —0.134 39 — 0.003 46
- 3p —0.001 53 —0.001 58 —0.11829 —0.001 48
012 3s — 0.000 74 —0.000 73 —0.598 48 —0.001 38

The 1/N expansion calculations for the Yukawa poten-
tial have been carried out before, although attention was
confined to the 1s and 2s states.>® Our results as given in
Table I indicate that the energy eigenvalues take the form of
divergent, or at best asymptotic, power series in . Numeri-
cal values for £ |, in Table VI show that incorrect results are
obtained from the perturbative series for A > 0.25. Conver-
gence, however, is much improved by the Shanks transfor-
mations, although the accuracy achieved still does not
match those of the more sophisticated Padé approximants. '
Results for the other excited states are given in Tables VII-
IX, which also include Padé approximant values taken from
Ref. 15.

We encounter the worse case of nonconvergence in the
energy series for the ECSC potential. Qur perturbative re-
sults agree with those of Ref. 17 to order A °. Although the
eigenvalues are not grossly in error over a range of A values,
the convergence of the energy series for each state is not
much, if at all, improved by the Shanks transformations. For
comparison purposes, we present the numerical values of the
energy eigenvalues of the various states in Tables X—XIII,

along with results from the other calculations.'s'” The val-
ues E,,,., are taken from Ref. 16 and correspond to the
E[10,10] values computed within the hypervirial Padé
scheme. The E 5 (perturbative result correct to the fifth or-
derinA)and Ep,,. (E[3,2] Padéapproximant to E 5) values
are from Ref. 17. '

V1. CONCLUSIONS

Using a modified 1/N expansion technique, we have ex-
ploited the analytic capabilities of algebraic manipulation
programs (such as REDUCE used here) to recursively calcu-
late energy eigenvalues and wave functions of the Schré-
dinger equation for a class of screened Coulomb potentials.
The method developed here can be applied to any potential
that has the form (4.1). Perturbative results for the Hulthén,
Yukawa, and ECSC potentials are obtained. In the cases of
the Hulthén and Yukawa potentials, convergence of the en-
ergy series can be accelerated using simple iterated Shanks
transformations, whereas the more sophisticated Padé ap-
proximant method is required to obtain energy levels of high
accuracy for the ECSC potential.

TABLE IX. Energy eigenvalues of the Yukawa potential for the 4s, 4p, 4d, and 4f states in atomic units.

Padé approximant Present calculation

A . E[6,6] E[6,7) E8 Egpans

0.025 4s —0.012 50 —0.012 50 — 0.012 60* — 0.012 50*
4p —0.01229 - 0.01229 —0.012 35 -0.01229
‘4d —0.011 87 —0.011 87 —0.01192 —0.01187
4

0.050 4s —0.00309 — 0.003 09 - 0.01‘2 17 —0.003 14*
4 — 0.002 60 —0.002 60 — 0.023 60 — 0.002 60
4d —0.001 57 —0.001 58 —0.01937 —0.001 51

0.06 4s —0.001 24 —0.001 24 - 0.030 32* —0.001 37"
4 —0.00071 - 0.000 75 - 0.09709 —0.000 71

0.08 4s — 0.000 05 —0.000 01 - 0.18003* — 0.000 58*

*To order A © only.
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TABLE X. Energy eigenvalues of the ECSC potential for the 1s state in atomic units.

Padé approximant Present calculation

/l Es E[213] Eexact E8 EShanks

0.06 — 0.440 200 - 0.440 201 —0.440 201 —0.440 201 - 0.440 201
0.08 —0.420 463 — 0.420 464 — 0.420 464 — 0.420 464 — 0.420 464
0.10 — 0.400 883 — 0.400 884 — 0.400 885 — 0.400 885 — 0.400 886
0.20 - 0.306 240 — 0.306 300 —0.306 335 — 0.306 347 —0.307 601
0.30 —0.218 698 —0.219 152 - 0.219416 —0.219 961 - 0.217 688
0.40 —0.139 680 —0.141 389 —0.142 439 —0.149 801 —0.137 282
0.50 —0.070 313 —0.074 675 —0.077 680 —0.131 042 — 0.063 520

TABLE XI. Energy eigenvalues of the ECSC potential for the 2s, 2p states in atomic units.

Present calculation

A Eevact Epuse ES E8 E snanks
0.02 2s —0.105 104 —0.105 104 —0.105 104 —0.105 104 ~0.105 104
2p —0.105 075 —0.105 075 —0.105 075 —0.105 075 —0.105 075
0.04 2s —0.085 769 —0.085 769 — 0.085 765 — 0.085 769 — 0.085774
2p —0.085 591 — 0.085 558 — 0.085 556 —0.085 559 — 0.085 566
0.06 2s —0.067 421 — 0.067 425 —0.067 386 — 0.067 423 — 0.066 695
2p — 0.066 778 — 0.066 771 — 0.066 750 — 0.066 778 —0.066 717
0.08 2s —0.050 387 — 0.050 408 —0.050 230 —0.050 418 — 0.050 058
2p — 0.048 997 — 0.048 967 —0.048 870 —0.049010 —0.048 845
010 25 — 0.034 941 —0.035 027 — 0.034 460 —0.035 203 —0.034 227
2p — 0.032 469 —0.032 372 — 0.032 060 — 0.032 587 —0.032 055

TABLE XII. Energy eigenvalues of the ECSC potential for the 3s, 3p, and 3d states in atomic units.

Present calculation

A Eexact EPndé Es E8 EShanks
0.02 3s —0.036 025 —0.036 026 —0.036 022 —0.036 025 —0.036 029
3p — 0.035 968 —0.035 968 — 0.035 965 — 0.035 968 —0.035 972
3d —0.035 851 —0.035 850 —0.035 849 — 0.035 851 —0.035952
0.04 3s —0.018 823 —0.018 863 —0.018712 —0.018 843 —0.018 632
3p —0.018 453 —0.018 469 —0.018 350 —0.018 466 —0.018 319
3d —0.017 682 — 0.017 669 — 0.017 605 —0.017 685 —0.017 614
0.05 3s - 0.011 576 —0.011724 —0.011234 —0.011747 —0.011 127
3p —0.010 929 —0.010 990 — 0.010 604 —0.011 046 —0.010 580
3d — 0.009 555 — 0.009 511 — 0.009 299 —0.009 590 — 0.009 349
0.06 3s — 0.005 461 — 0.005 950 —0.004 614 — 0.006 405 — 0.004 428
3p —0.004 471 — 0.004 679 —0.003 641 —0.005 128 —0.003 617
3d —0.002 308 —0.002 180 —0.001 615 — 0.002 525 —0.001 743
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TABLE XIII. Energy eigenvalues of the ECSC potential for the 4s, 4p, 4d, and 4f states in atomic units.

Present calculation
A Epet Epase ES EB E shanks
0.01 4s —0.021 438 ~0.021 438 —0.021 437 —0.021 438* —0.021 437°
4p —0.021 424 —0.021 425 —0.021 424 —-0.021 424 —0.021 425
4d —0.021 398 —0.021 398 —0.021 397 —0.021 398 —0.021 399
af —0.021 358 —0.021 358 —0.021 357 —0.021 358 —0.021 359
0.02 4s — 0012572 —0.012 582 —0.012 540 —0.012 616 —0.012 565*
4p —0.012 486 —0.012 493 —0.012 455 —0.012 487 —0.012 427
4d —0.012 310 —0.012 311 ~0.012 283 —0.01231) —0.012275
4f -—0.012038 —0.012035 —0.012019 —0.012038 —0.012 022
0.03 4s —0.005 270 —0.005 396 - 0.005017 - 0.005 891* —0.005 199*
4p — 0.005 033 —0.005 117 —0.004 785 —0.005 134 —0.004 760
4d —0.004 539 — 0.004 559 —0.004 311 — 0.004 596 —0.004 333
4f —0.003 748 —0.003 720 —0.003 574 —0.003 759 —0.003 623
*To order A ° only.

It should perhaps be pointed out that although the un-
modified 1/N expansion’ can generate results that are not
perturbative (in A1), the energy series (in 1/k) is also, al-
though asymptotic, often divergent. Resummation tech-
niques are still necessary to stabilize the sequence of partial
sums. Furthermore, calculations in such a case are extreme-
ly complicated algebraically, and, even with algebraic ma-
nipulation programs, only a limited number of terms in the
1/k series can be computed.

After this paper was submitted for publication, it was
brought to my attention that similar treatments of the
Hulthén potential and the generalized exponential cosine-
screened Coulomb potential have recently appeared in the
literature.2%! I wish to thank the referee for informing me of
these references.
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The Painlevé criterion has been applied to the supersymmetric nonlinear Schrodinger equation.
This particular system of fermionic and bosonic fields shows up a rich spectrum of resonances
and it can be explicitly proved that the expansion coefficients at the resonance positions can
remain arbitrary. At this point is is worth noting that even when the extra nonlinear field
(which is fermionic in this case) is considered to be bosonic, the resulting system turns out to
satisfy the Painlevé test so that this second system may be thought of as a new completely

integrable system whose Lax pair is still to be found.

I. INTRODUCTION

In recent times the class of nonlinear integrable equa-
tions has been extended in various directions. One of the
most important classes is obtained by the incorporation of
fermionic fields in accordance with the principle of two-di-
mensional supersymmetry.’ The corresponding super-
AKNS problem has been worked out very recently. The
Bicklund transformation and Hamiltonian structure of
such equations have been obtained by Roy Chowdhury and
Roy.? Here our motivation is to apply the Painlevé property
of such evolution equations containing anticommuting vari-
ables, which to the extent of the present authors’ knowledge
has not yet been done. Incidentally, a new result sprang up
from our analysis, that is, if we consider the extra nonlinear
variable () as a bosonic field, rather than a fermionic one,
even then the set of equation is completely integrable in the
Painlevé sense so that we have actually obtained a new class
of coupled nonlinear Schrédinger equations (NLSE’s)
which is integrable but whose Lax pair is still not known.

il. FORMULATION

The supersymmetric NLSE’s read®

ig, = —qux +2Kq*q* + K¢ yyg — iK'y,

i, = — 2, + kgt g — ik 2 (2qUF + 97 g,
where g(x,¢t) is the original NLSE field variable and #(x,¢),
¥* (x,t) are the fermionic counterparts introduced through

supersymmetry. In the following we will be working with the
real and imaginary parts of (1) so we set

q=uy+ivy, Y=u,+i,, (2)

whence we have the four nonlinear partial differential equa-
tions

Ug = — Upxx + K [zvo(”é +03) + uo(ui + U%)]

1/2
— kY (w0 —v015)

*) Permanent address: High Energy Physics Division, Department of Phys-
ics, Jadavpur University, Calcutta-32, India.
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— Vo = = Upey + Kk [2u(uF + 03) + vo(ui +03) ]

+ k2 (v, +uw,y), 3)
=0y = —2uy,, + kuy(ug +v3)

+ k2 [2000u,, — ugdy) + (Uy00x — Vitie) ]
Uy = — 2y, + kv (uf + %)

—k 1/2[2(u0u1x + 00y ) + (g, + 030, ) ] -

To proceed with the Painlevé analysis we set®

0 g
Uy = Zaj¢1+a’ Vo = ij¢1+ﬁ’

j=0 i=o (4)
o0 . oc .

u, = 2 C}_¢J+V’ v, = z dj¢j+5,
j=0 j=0

At this point we should note that this type of general ansatz
was first used by Weiss ez al.> But then a simplification of this
ansatz, which at present is widely used, was formulated by
Kruskal.® He suggested that one can specialize ¢(x,r) as
¢ =x — [ (¢) and consider the expansion coefficients to be
functions of “time” only. We are actually following Krus-
kal’s prescription and analyzing the Painlevé conjecture of
“pole’s being the only movable singularity in the complex
t-plane.” The most important and successful applications of
this simplified ansatz is in the case of the Zakharov equation
by Goldstein and Infeld,” in the case of the modified Bous-
sinesq equation by Clarkson,® in the case of the longwave—
shortwave interaction equation by Roy Chowdhury and
Chanda,” and lastly in the case of the Yang-Mills equation
by Jimbo et a/.1°

But since # and v are fermionic we must assume fer-
mionic character for the coefficients ¢; and d;, while (a;,b;)
are bosonic. Due to the fermionic character it is important to
note that ¢ =d; = 0.

Now comparing the leading-order singularity leads to

(5)

Equating coefficients of terms containing ¢ we get the
following equations for the leading coefficients a,, b, ¢;, dy:
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— 242 + k{2(a} +b2) + 3 +d3}
=2k Y (cdy/ag)p, =0,

—~ 242 + k{2(a} +b2) +c% +d3}
+k'2[(E —d3)/bo]4, =0,

— 482 + k(a3 +b2) (6)
+ 3k *[(aodo — boco) /014, =0,

— 442 + k(a} +b3)
+ 3k l/2[(‘1()"0 + bydy)/dy1¢, =0.

- [b,_z,, + (r" 2)¢1br——l]

Remembering the condition that c3 =d 32 =0, we see
that the simplest solution to Eq. (6) is

¢co=4d, (undetermined), €))
bo =0 s o= % *

Substituting in the original equation the expression for the
fields,"!

u0=a0¢_l+ar¢r—l’ uozbo¢“’+br¢"’1,
ul=c0¢—l+cr¢r—l’ U1=d0¢_l+d,¢’—’,
we arrive at the recurrence relation of the form

(8)

= [ur—z,xx + {zar—l,x(r_ 2)¢x +ar—l¢xx (r— 2)} +a,¢§(r— 1)("_ 2)]
+ k [2a4(2(aga, + bob,) + coc, +dod,) +a,{2(a + b3)} +2a5(a} +b7)
+ ar(z[a()ar + bObr] +C0C, +d0dr) + Zar{az + b%}] + kl/z[(co,xdr—-l + docr—- l,x) + (do,xcr—l +c0dr—l,x)]

+ {docr¢x (r— 2) + cOdr¢x (r - 2)} ‘

()

Three other similar equations are also generated. These relations are somewhat simplified if we assume that the expansion
coefficients @;, b;, c;, d; all are functions of time only. Then the condition for nonzero values of a,, b,, c,, d, leads to the

vanishing of the determinant,

4—r+3r 0 cork /2 cork 12
0 — (P =3 — kM2 (r—2) (r—2)c
A= 172 1/2 ’
cok V2 (r—5) (r—3)cok — 2P —6r+3) —(2r—-13)
ek r~5) —(r—3)ck'? —~(2r—3) — (2P —6r+3)
r . .
which can be simplified to the form sions for (a,,b,,¢,,d,) it is easy to observe that all the coeffi-
A=7 D=1 (r—2)(r—3)2(r—4)=0, cients (a,b,,c,,d,) are arbitrary.
(r+ Dir=Dr=2)(r= 3% ) At r =3 all that the coefficients (a,,b,,c;,d;) are con-
(10) nected to the previous ones by equations of the following
so that the resonance positions are form:
r=0)_1a 132,374- (11) 4a3+300k1/2(03+d3)
= — by, — b, —2kal(a% +b%) ’
Theresonanceatr = — 1 corresponds to the arbitrariness of — e ey —dy)

the solution manifold ¢(x,t) = 0. At the other resonance
positions we evaluate the coefficients recursively. At r =1
we obtain

a,=0, b= —¢,/2k 12
dl = 1126'0¢‘, €= — 'Il200¢t .

But since ¢, is not known, and also ¢,, d, are not fixed, we see
that the expansion coefficients (b,,c,,d,) are arbitrary. At
r = 2, we have the complicated set of equations written be-
low for @, b,, ¢,, d,:

6a, + 2k 1 (cxo + i)

= —kY2[2(a} + b%) + 44t + 2c0(c, +d))],
2b, = — k'[4a,b, + 2cob,(c; +d)k '],
k'2cy(3a, — by) + ¢, —d,

= —dy, —keo(a} +b}) — 2k %aycy,
kY2cy(3a, + by) —cy+ d,

=co, — kdo(@® +b2) —2k'?ad,.

But since the determinant of the coefficient on the rhs of
(ayb,,cy,d;) vanishes we have really three independent
equations instead of four. If we also use the above expres-

(12)

(13)
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= —a, —ap, — 2ka,(a} +b1),
2¢ok %a, — 3¢, — 3d,

= —d,, —d$, —cik(ai +b}),
ZC()k l/2a3 - 303 - 3d3

=c,, + b, — kdi (@ +b3).
So here it is evident from the last two equations of (14) that
all of the coefficients (a;,b5,¢5,d;) cannot be determined.
Similar analyses also hold for the coefficients (a,,b,¢,,d,),
so that we can conclude that the supersymmetric nonlinear
Schrédinger equation is completely integrable in the sense of
Painlevé test.

(14)

ill. BOSONIC CASE

In our above analysis the extra nonlinear field ¥(x,?)
was fermionic and people have already found out the Lax
pair for such system. We now want to investigate the situa-
tion when ¥(x,t) is simply another bosonic field just as
q(x,t) and Eq. (1) is no more a super-NLSE but a new pair
of coupled NLSE in ordinary variables.

Let us go back to Egs. (6) determining the leading coef-
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ficients ag, by, co, dy, Whence this time c? = d 2 0. We de-
duce from (6)

ap(c: —d3) +2bycyd, =0,
Co(aoCo + body) + do(bocy — apdy) = 0.

To solve these we assume ¢,/d, = x and by/a, = a, so that
we have the connections

a,=4/B or —1/8, B*=1+a? (15)

and the corresponding relation between ¢, and d, can be
written as

co = either —dy(a+B)or —dy(a—pB).

In the above computation we have set ¢ = x — ¥(¢). So fin-
ally we have two distinct cases for the values of the leading
coefficients:

= —(a—PB)d,,
a,= —4/8, (A)
d}=12/Ba—p),
o= — (a—pBd,,
ag=1/B, di=2/B(a—p).

r—3

(16)
(B)

Equating coefficients of ¢ yields the following four equa-
tions for the coefficients (a,,b,,c,,d, ):

a,X + 4b,apbok + c,{2ancok + dok 2 (r — 2), }

+d,{2a,dok + ko (r—2)} =0, (17a)
dkaghoa, + b, Y + c,{2bycok — k ¢y (r — 2)¢, }
+d, {2bydok + k'?dyd (r —2)} =0, (17b)

a,{2a0cok — (r — 3)k 2dy@, } + b,{2bscok + k '/?
X(r—23)eod, } +¢,Z—d . (2r —3)ak 6, =0,

rr—3)(r—10)(r+6)(r—5)(r+ 1)(# —r—60) =0,
(18)

where
X=(c+d3+2b2 +6al)k— (r— D(r—2)¢2,
Y= (605 +2a5 +c; +d)k—(r—1)(r—2)4,
Z=(a; +b3)k—2(r—1)(r—2)¢;
+(2r —3)k by,
T=(ai+b5)k—2(r—1)(r—2)¢%
—Qr—=3)k"by, .
So the new bosonic version of our equation does have reson-
ances at the positions
r=0,—1,3,5,10.

It is to be noted that r = — 6 is not accessible and r = — 1
corresponds to the arbitrariness of the wave front ¢(x,?).
Also the equation 7> — r — 60 = 0 does not possess any in-
teger root. In the derivation of Egs. (18) and (19) we have
considered case (A) noted previously. Case (B) can be simi-
larly treated and the equation for the resonance positions is
given by

det A = (8dy/B)r(r —3)(r+6)(r—-5) =0, (20)
so that resonance occurs only at » =0, 3, 5, — 6. But since

the set does not contain » = — 1, we restrict our analysis to
the case (A) only in the following.®

(19)

IV. PROPERTIES OF EXPANSION COEFFICIENTS

To study the arbitrariness of the coefficients (a,, b,,c,,
d, ) at the resonance position 7 = 7,, where 7, is a root of Eq.
(18), we firstly deduce a recurrence relation for the coeffi-

(17¢c) . .
cients. It can be written as
a,{2adok — k Vey(r — 3)4,}
+ b, {2bodok — do(r — 3)k %, } @n %n
+e,{—k'"*2r—3)ay.} +d,T=0. (17d) M= b, = B. , (21)
Again for nonzero values of (a,,b,,c,,d,) we set equal to Cn Vn
zero the determinant formed by the coefficients in (17) d, S,
which leads to an equation for r of the form where the matrix M and (e, ,3,,7,.,0, ) are given as
J n n 7’" n g
X 4a,b, 2aucy + do(n —2)  2a,dy+ co(n —2)
Mo 4a,b, Y 2byco — co(n —2)  2bydy +dy(n —2)
2a,co — (n—3)dy  2bycy+ (n— 3)c, VA —@2n—3a, |’
2a0dy — (n —3)cy  2bydy — (n— 3)d, — (2n — 3)a, T
I
a,=—(n—2)b, ,4, atr=2,
——ao{Z(ai_l +bh_) 4 +d§—1}
2 ¢, = —dy(a+B) ,a, = xad?,
—{Zaoan—1+2boan—1bn—1}’ 2 2 2 oF (24)
B, = — [bf2(@_, +b3_ )+ 2, +d2_\}] bi=ybodi, =z =G,
—(n—=2)a,_»¢,, (22) which shows that the coefficients are not determined,
V.= —(n—=2)d, —2¢, —co(a>_, +b%_,), whence (x, y, z, o) are some numerical coefficients. In each
8, = 4+ (n—2)c, — 26, —dy(a®>_, +b%_,). case since the rank of the matrix on the left-hand side is
g o " not always less the equations never determine the coefficients
Now at the resonance positions at 7 = 1, uniquely. The similar set of results can also be obtained for
di=(a+pc, a = —ab,, (23)  the coefficients at » = 3, 5.
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V. CONCLUSION

In the above analysis we have shown that the super-
NLSE is a completely integrable system and possesses the
requisite Painlevé property. An important offshoot of our
result is that even when the anticommuting field is consid-
ered to be commuting, the system retains the Painlevé prop-
erty so that we have actually found out a new nonlinear sys-
tem which is an extension of the usual NLSE which is
completely integrable but whose Lax pair is still not known.

ACKNOWLEDGMENTS

Oneof the authors (A.R.C.) would like to thank Profes-
sor Abdus Salam, the International Atomic Energy Agency,
and the United Nations Educational Scientific and Cultural
Organization (UNESCO) for hospitality at the Interna-
tional Centre for Theoretical Physics (ICTP), Trieste. He
would also like to thank Professor M. Kruskal for the en-
couragement he obtained from his beautiful lecture during

1812 J. Math. Phys., Vol. 28, No. 8, August 1987

Spring College on Condensed Matter Physics held at ICTP,
Trieste.

He would also like to thank the Swedish Agency for
Research and Cooperation for supporting his visit.

'B. A. Kuperschmidt, Lett. Math. Phys. 9, 323 (1985); A. Roy Chowd-
hury, “A new approach to supersolutions of supersymmetric nonlinear
equations”, ICTP, Trieste preprint IC/83/201, 1983.

2A. Roy Chowdhury and S. Roy, J. Math. Phys. 27, 2464 (1986).

3P. P. Kulish, ICTP, Trieste preprint IC/85/39, 1985.

4J. Weiss, J. Math. Phys. 25, 13 (1984).

5J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).

M. D. Kruskal (private communication).

"P. Goldstein and E. Infeld, Phys. Lett. A 103, 8 (1984).

SP. Clarkson, “The Painlevé property, a modified' Boussinessq equation
and a modified Kadomtsev—Petviashvelli equation”, Clarkson College of
Technology preprint, Potsdam, New York, 1986.

°A. Roy Chowdhury and P. K. Chanda, J. Math. Phys. 27, 707 (1986).

'°M. Jimbo, M. D. Kruskal, and T. Miwa, Phys. Lett. A 92, 59 (1982).

"'M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phys. 21, 715, 1006
(1980).

A. Roy Chowdhury and M. Naskar 1812



The energy levels and the corresponding normalized wave functions for a

model of a compressed atom

Per Olof Fréman, Staffan Yngve, and Nanny Fréman
Institute of Theoretical Physics, University of Uppsala, Thunbergsvigen 3, S-752 38 Uppsala, Sweden

(Received 27 May 1986; accepted for publication 4 March 1987)

In the model of a compressed atom (or ion) considered in the present paper the boundary
condition associated with the corresponding uncompressed atom, i.e., the condition that the
radial wave function must vanish at » = o0, is replaced by the boundary condition that the
radial wave function must have a node at the finite distance » = a. The treatment of the
problem of obtaining the energy shift due to the compression is based on the phase-integral
method developed by Froman and Froman, an essential feature of which is that one can use
exact formulas in the calculations and make all approximations in the final stage. The
treatment of the problem of obtaining the relative change of the wave function due to the
compression is based on the rigorous evaluation of the normalization integral developed by
Furry [Phys. Rev. 71, 360 (1947)] and Yngve [J. Math. Phys. 13, 324 (1972) ], in which one
also uses exact formulas in the calculations and makes all approximations in the final stage.
Since compression of an atom gives rise to very subtle effects, rigorous methods are
indispensible for obtaining accurate and reliable analytical final formulas. As an application,
the resulting general formulas are particularized to the case of a hydrogenic atom, and a
numerical illustration of the accuracy of the formulas is given.

I. INTRODUCTION

In the treatment of the radial Schrodinger equation for
an atomic electron in a free, uncompressed atom (or ion) the
boundary conditions are ¥(0) = ¢Y( ) =0. If, however,
the atom (or ion) is enclosed in a sphere of radius a, the
boundary conditions are instead ¥(0) = ¢(a) =0. This
change of boundary condition causes a shift upwards of ev-
ery energy level and an increase of the normalized wave
function inside the compressed atom. These effects have
been studied theoretically during several decades by many
authors.'~**

There are a lot of physical problems that, although a
boundary condition is imposed on the wave function at a
surface, are not relevant for our present investigation and
hence are not included in our references.’** As examples of
those kinds of problems we mention the following: the com-
mon model of a particle enclosed in a box, treated in text-
books on quantum mechanics, and the related model of non-
interacting particles enclosed in a box, usual as a simple
standard model in statistical mechanics, for instance in the
electron theory of metals and in chemistry. These are models
of a somewhat different nature than the model of a com-
pressed atom considered in the present paper. So are also the
models of molecular or atomic constituents with hard cores
used in the theory of gases and liquids and in the calculation
of phase shifts. In the cellular method of solid state physics
one imposes a boundary condition on the derivative of the
wave function at a finite distance from the nucleus, but this
boundary condition does not cause the confinement of the
system to a box and is thus of a different nature than the
boundary condition used in the present paper. The latter
part of this assertion is to some extent also true for the
boundary condition in certain problems of surface physics
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when there is an atom near a rigid wall of infinite extension.
In quantum chemical investigations one sometimes uses
wave functions that are equal to zero outside a certain re-
gion, but again this is another kind of localization than the
kind of confinement in the model of a compressed atom de-
scribed above. The kinds of investigations just mentioned are
not represented in our list of references,’** which will now
be briefly discussed.

The model of a compressed atom which we shall study
in the present paper was first introduced in 1937 for the case
of the hydrogen atom in a paper by Michels, de Boer, and
Bijl,! which was soon foliowed by a related paper by Som-
merfeld and Welker.? Since then problems concerning con-
fined atoms have been studied by many authors.>** The fre-
quency of the published papers indicates a fairly constant
interest in the subject over the years, except for a decrease
during the sixties, which is then followed by an increased and
still continuing interest.

Many papers are concerned with the hydrogenic atom,
i.e., a hydrogen atom or hydrogenlike ion, in a box
with impenetrable or partly penetrable walls of spheri-
cal, paraboloidal, or prolate spheroidal
Shape.1'2‘11’14’21’25’27‘42’45’46’51’54’56 Among the Subjects treat-
ed in these papers we mention calculation of shifts of energy
levels, 4615436 polarizability, 3! astrophysical studies con-
cerning planets and white dwarf stars,” calculation of the
diamagnetic screening constant,”” hyperfine split-
ting,*>*6-31:54 eigenfunctions,®'>**% nuclear magnetic shield-
ing,’' and hyperfine interaction energy.>?

In addition to the references concerning the hydrogenic
atom enumerated above, there are also some papers in which
the Stark effect is treated for a hydrogenic atom confined by
a spherical wall>*>*® or by paraboloidal walls.®' In this con-
nection we also mention papers concerning a charged parti-
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cle in a box under the influence of a uniform electric field>**3
and possibly also a Mathieu potential®® and papers concern-
ing an electron or a system of electrons inside a box in a
magnetic field.'”*!34

Another whole series of papers concerning the hydro-
genic atom in a spherical box was initiated by Wigner.?
These papers®22430.3637.3941 4re concerned with the difficul-
ties that appear in the Rayleigh~Schrédinger perturbation
theory when applied to the hydrogenic atom and are thus
concerned with the applicability of perturbation theory it-
self. In these papers the hydrogenic atom is, in the intermedi-
ate steps of the perturbation calculation, enclosed in a
spherical box of finite radius, which at the end is allowed to
tend to infinity, so that the result for the usual hydrogenic
atom is obtained. To this series of papers there belongs alsoa
paper concerning the one-dimensional motion of a particle
under the influence of a one-dimensional attractive delta
function potential and symmetrically enclosed within infi-
nitely high potential walls.?® The same delta function poten-
tial model has also been considered in another paper,™®
where the purpose was, however, not to throw light-on per-
turbation theory results.

Several papers deal with the nonrelativistic treatment
of the artificially bounded harmonic oscillator, i.e.,
the oscillator enclosed between potential
walls.4'5’7'8'9"2'13’23'25'33'3“'4“’47'49'62 ThlS kil’ld Of oscillator has
also been treated relativistically.® The inverted linear har-
monic oscillator*® with artificial boundary conditions has
also been treated. There are also papers concerning particu-
lar linear anharmonic oscillators®” arid particular linear,
symmetric double-well oscillators®>%° enclosed symmetri-
cally between infinitely high potential walls. Among the
physical problems treated with the model of a harmonic os-
cillator with artificial boundary conditions, we mention the
proton—deuteron transformation as a source of energy in
dense stars,* the fundamental mass-radius relation for a
white dwarf star,” an investigation by Chandrasekhar® on
the rate of escape of stars from galactic and globular clusters
when allowance is made for dynamical friction, a possible
role of the symmetrically bounded linear harmonic oscilla-
tor in the theory of the specific heat of solids,'? phase transi-
tions of second order,'> energy levels and oscillator
strengths,?* certain anharmonic effects in solids,*> and mag-
netic properties of metallic solids.>*

Sommerfeld and Hartmann® have treated the problem
concerning the rotation of a rigid diatomic molecule restrict-
ed to the angular region 0<%, a problem related to ideas
emanating from Pauling concerning phase transitions in cer-
tain solids as well as to Debye’s theory for dipole molecules
in electric fields. The same rigid rotator has also been treated
with restriction to the angular region e<d<7 — €.

It was pointed out by ter Haar'® that, in rigorous treat-
ments, the boundary conditions, which were used in the pa-
pers where the Morse potential and the Rosen~Morse poten-
tial were originally introduced, should be modified from
“natural” into “artificial”” boundary conditions.

There are also papers concerning atoms with more than
one electron'®2° and concerning molecules'4-163149:5¢ cop.
fined in boxes. The following topics are discussed in those
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references: a helium atom compressed in a spherical box, '®
a compressed argon atom according to a statistical model of
the atom,?® molecular physics and the virial theorem,' the
compression of a gas composed of diatomic molecules, ' the
hydrogen moleculeion in a spheroidal box with the nuclei at
the foci,'?! ground state energy of solid molecular hydro-
gen at high préssures,*® the molecule ions H," and HeH* *+
inside spheroidal boxes with the aim of calculating energy

-eigenvalues and eigenfunctions, and for H;* also the hyper-

fine splitting.>®

Although our study of the literature to find-and examine
all the above-mentioned references has been rather time con-
suming, the papers quoted'%* are not claimed to constitute a
complete list of relevant references. We remark, in particu-
lar, that we have come across no references to Russian pa-
pers, which may be an indication of incompleteness. For the
references published after 1980 the list is expected to be less
complete than for the earlier references. We have in fact not
looked systematically for references from the last few years.
Although our list of references'~** may thus not be complete,
it demonstrates in any case that during almost five decades
there have appeared numerous publications dealing with the
model of a compressed atom discussed above. However, due
to the subtlety of the effects studied and to simplifications
and limitations in the various treatments, there has been no
general agreement on the calculated results. Thus since reli-
able and accurate analytical formulas for the effects on ener-
gies and wave functions, due to the compression, seemed to
be missing in the literature, we found it worthwhile to under-
take the investigation to be described below. Our aim is to
derive simple, accurate analytical results for a system con-
sisting of a nonrelativistic quantal particle bound in an un-
specified, smooth, spherically symmetric single-well poten-
tial which is enclosed in a large, impenetrable sphere.

In Sec. II the results of the method developed by Fro-
man and Fréman®-%7 for the rigorous solution of connection
problems are described briefly but in sufficient detail to
make the present paper self-contained. In Sec. III we derive
an exact quantization condition for the energy levels of the
above mode] of a compressed atom by means of the method
described in Sec. I1, and in Sec. IV we obtain an exact expres-
sion for the normalization integral of the corresponding
wave function by means of a rigorous method devised by
Furry®® and Yngve.® An essential common feature of the
methods applied in the present paper is that one uses exact
formulas in the calculations and makes all approximations
in a pontrollablé way in the final stage. The use of such a
rigorous procedure for obtaining reliable results is particu-
larly important in the present context, since one is looking
for very subtle, in fact “exponentially small,” effects. It is
therefore essential to have complete control of the calcula-
tions. Neglecting, in the exact quantization condition and in
the exact expression for the normalization condition, certain
correction quantities for which upper bounds are available,
we obtain in Sec. V and Sec. VI, respectively, simple approxi-
mate formulas for the energy shift and for the relative change
of the wave function due to the compression. Section VII
contains a discussion of the wave function, the aim of which
is to illuminate the consistency of certain results in the pres-
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ent paper with results in Ref. 70. The results obtained in
Secs. V and VI are in Sec. VIII generalized from the use of
the first order to the use of the arbitrary-order phase-integral
approximation generated from a conveniently chosen base
function [see Refs. 71, 72 (pp.126-131), and 73]; see also
Refs. 74-76. In Sec. IX the resulting arbitrary-order formu-
las are applied to the particular case of a compressed hydro-
genic atom, and the accuracy of the formulas thus obtained
is demonstrated graphically for the first- and third-order ap-
proximations.

il. RIGOROUS METHOD FOR THE SOLUTION OF
CONNECTION PROBLEMS

In this section we give the basis for understanding the
treatment in the present paper by describing in a very con-
densed form the method for solving connection problems,
developed in Ref. 65, and by collecting results and formulas
from Refs, 65-67 and 71-73 which are needed in the present
paper. Some changes in notation have, however, been made.
Thus @ *(z) and Q? mod (z) in Refs. 6567 and 71-72 corre-
spond to R(r) and Q *(r), respectively, in the present paper.
Furthermore, the definition (2.14) of the matrix M below
differs slightly from that of the matrix M in Eq. (3.13) of
Ref. 65.

Consider the differential equation

d*y
R 0,
FE Ny =

(2.1)

where R (r) is assumed to be an analytic function of the vari-
able , which will be allowed to take also complex values. We
introduce the two linearly independent functions

filry =g V3(ryexp [ + iw(r)], (2.2a)

L(r) =g Y23(r) exp [ —iw(r)], (2.2b)
where

w(r) =frq(r)dr, (2.3)

¢(r) being a so far unspecified function, chosen such that the
functions f,(r) and f,(r) are approximate solutions of the
differential equation (2.1). By introducing convenient cuts
in the complex r plane we can make f(r) and f,(r) single
valued in the region under consideration. From (2.2a),
(2.2b), and (2.3) it follows that

HOf5(n = f(Nf1(r) = =20 (2.4)

The method to be described below can in principle be
applied for solving connection problems associated with ar-
bitrary, linearly independent functions f;(r) and f,(r)
which need not be of the form (2.2a) and (2.2b) with (2.3).
A general exposition of the main features of the method,
based on such unspecified functions (and in fact applied to
an ordinary differential equation of arbitrary order), is given
in Ref. 67. In the present paper, however, the functions f, ()
and f,(r) represent phase-integral approximations of the
form (2.2a) and (2.2b) with (2.3), where the function ¢(7)
corresponding to the (2N + 1)th-order approximation is
defined by the series expansion’'""
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N
q(r) = onz,zQ(r), (2.5)

where Q(r) is the unspecified base function from which the
functions Y,, are generated according to known formulas,
given up to Y,, in Ref. 77. The first few functions Y,,, which
were given already in Ref. 74, are

Y0= 1, (2.63)
Y, = leo, (2.6b)
1 1 1d/1 de
V- —cg-1ld(ld) 6
g T3 EAvE (2.6¢c)
where
ey(r) = RO - Q) +0 P Loty @)

0%
2 2 2
SR £ G I P

In the context of the present paper, where we are dealing
with the radial Schrodinger equation, we must take into ac-
count the possibility of a first- or second-order pole of R(r)
at 7 = 0. If the conditions [cf. Eq. (11.9) in Ref. 65]

lim #R(r) #} (2.8a)
r—Q

and [cf. Eq. (6) in Ref. 78]
Hm 72{Q%(r) — R(r)] = — (2.8b)

r—0

are fulfilled, the arbitrary-order phase-integral functions
Jf1(r) and £, (r) remain approximate solutions of the differen-
tial equation (2.1) in the neighborhood of r = 0. Choosing
Q(r) in accordance with (2.8b), we can therefore, when
(2.8a) is fulfilled, in solving the connection problem start by
imposing the relevant boundary condition at » =0, The
function — Q*(r) appearing in the present paper is qualita-
tively depicted in Fig. 1. A possible choice of Q () in accor-
dance with (2.8b) is

Q(ry =R(r) — 1/(45). (2.8b")

In the following exposition in this section, as well as in
Secs. HHI-VI1I, we shall, for the sake of simplicity, assume
that we are dealing with the first-order approximation, i.e.,
that according to (2.5) we have g(#) = Q(r) in the expres-
sions (2.2a), (2.2b), and (2.3). The extension from the first-
order approximation to an arbitrary-order approximation is
a straightforward procedure, which is described in Sec. VIII.

Any exact solution () of the differential equation
(2.1), together with its derivative ¢’ (r), can be written

U(r) = a,(r)fi(r) +a,(r)fo(r), (2.9a)
UV (r) =a, (Nfi(r) +a(r)f5(r), (2.9b)
a,(r) and a,(r) being uniquely determined by (2.9a) and
(2.9b). Obviously, one obtains the derivative of ¢(r) by dif-
ferentiating (2.9a) whilea, (r) and a,(7) are treated formal-

Iy as if they were constants, which one achieves by imposing
the condition

ai (rfi(ry +as(r)fo(r) =

on the functions a,(7) and a,(r). Substituting (2.9a) into
the differential equation (2.1), and using (2.10), we obtain a

(2.10)
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FIG. 1. For real values of r the qualitative behavior of — Q?(r) is shown.
The cut in the complex r plane, introduced in order to make Q(r) single
valued, is indicated by a bold line, and the contours of integration occufring
in the formulas are also depicted. The contour T is a closed loop encircling
the two classical turning points #; and ¢,. The contour I'(r,) is a nonclosed
contour which starts from the point on a Riemann sheet which corresponds
to the point 7, in the complex » plane under consideration, passes around the
classical turning point #,, and ends at the point »,. The phase of @(r), which
is also indicated in the figure, is chosen such that Q(r) = |Q(7)| on the
upper lip of the cut between 7, and ¢,.

system of two differential equations of the first order for
a,(r) and a,(r), the solution of which can be obtained in
closed form by means of an iteration procedure. Defining

_ al("))
a(r) _(az(r) ,

we can describe the result as follows. Given an arbitrary
column vector a(7,) at the point 7,, we have for the column
vector a(r) at the point 7 the following formula:

(2.11)

a(r) =F(rry)a(ry), (2.12)

where F(7,7,) is a two-by-two matrix, the elements of which
are given by convergent series; see Eqs. (3.22a)—(3.22d) and
(3.3) in Ref. 65. This matrix satisfies the differential equa-
tion

g—F(r,ro) = M(NF(r,ry), (2.13)
;

where
M(r) =%ieo(r>Q(r)

( 1 exp[ — 2i w(r)])

X —exp[2iw(r)] -1

: (2.14)
with ¢, given by (2.7). The matrix F(r,r,) is in fact the par-
ticular solution of the differential equation (2.13) which is
equal to the two-by-two unit matrix for r = r;. The following
general properties of the F matrix should also be noted:

F(r,ry) =F(r,r)F(rir,), (2.15)
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det F(r,ry) =1, (2.16)
F(rry) = [F(rer)]1™!
Fpy(ro,r) - 12("0,"))
= . 2.17
(—le(ro:") Fyy(rr) ( )

Useful estimates of the series defining the elements of the
matrix F(7,7;) can be derived on the assumption that the
points 7 and 7, can be connected by a path A in the complex »
plane, on which the absolute value of exp{iw(r)] increases
monotonically (or is constant) along A in the direction from
ry to r. These so-called basic estimates can for our present
purpose be written

|Fy1(rre) — 1|<4lexp(u) ~ 1], (2.18a)
|Fi2(rro)|<3lexp(u) — 1]|exp[2i w(ry)]|, (2.18b)
|Fai(rre) |<blexp(u) — 1]|exp[2i w(r)]|, (2.18¢)
|Fpa(rir) — <4 o + ylexp(p) — 1 —ul

X Jexp{2i[w(r) —w(re) 1}, (2.18d)
where 1 by definition is the integral

7 =L |€o(r)Q(r)dr|. (2.19)

When using the estimates (2.18a)-(2.18d), we shall always

assume that u €1, which is in general the case if R(r) varies

slowly, if @%(r) is chosen conveniently, and if the path A

does not pass too close to a zero or a singularity of Q 2(7).
We notice that if u €1 and furthermore

lexpli w(ry) }| =|expliw(r) ]| =1,
the basic estimates (2.18a)-(2.18d) provide approximate
values of all four elements of the matrix F(r,7,), which is

seen to be approximately equal to the unit matrix. On the
other hand, if

lexpliw(ry)]| €1 <lexpliw(r) ]|,
only one element, viz., F, ,(r,7,), is determined approximate-

ly by the basic estimates (2.18a)—(2.18d). In other cases, for
instance when :

lexpli w(re) 1| =1« |expli w(r ]},

the basic estimates provide approximate values of two of the
elements of F(r,r;). For the matrix elements, whose values
are not approximately determined by the basic estimates
(2.18a)-(2.18d), these estimates still give realistic orders of
magnitude, i.e., the right-hand members of (2.18a)-(2.18d)
although upper bounds, in general do not exceed the lefi-
hand members very much.

More general cases, when the points 7, and » cannot be
joined by a path along which |exp[i w(7) ]| increases mono-
tonically, can be handled by dividing the path from r, to »
into parts along which the absolute value of exp{i w(r)] is
monotonic, and utilizing the multiplication rule (2.15), the
inversion formula (2.17), and the basic estimates (2.18a)—
(2.18d) with the notations 7, r,, and 7, changed appropri-
ately. ‘

When R(r) and Q ?(r) are real on the real 7 axis, and the
points 7 and 7, lie on the real axis, there are certain relations
between the elements of F(r,r;). These so-called symmetry
relations are a direct consequence of the fact thatif #(r) isa
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solution of the differential equation (2.1) on the real axis, so
is also the complex conjugate function ¥*(r). This fact, in
turn, immediately follows from our assumption that R(r) is
real on the real axis.

From now on we shall assume that R (r) and Q*(r) are
real on the real axis and that — Q ?(r) behaves, for real val-
ues of r, as indicated in Fig. 1. By restricting the variable r to
liein the upper half of the complex r plane, including the real
axis with the exception of the zeros and singularities of
Q*(r), we make the functions f, (#) and £, (r) single valued in
the region of the complex » plane under consideration. The
lower limit of integration in the definition (2.3) of w(r),
which has so far been unspecified, will from now on be cho-
sen to be equal to #, which is the first zero of the function
Q?(r) on the positive real r axis; see Fig. 1. This means that
from now on w(r) is defined by

w(r) = j Q(r)dr. (2.20)

For the case illustrated in Fig. 1 the symmetry relations

for the matrix F(r,,r,) are

Folrgr) =iF¥ (rer),

Fy (rory) = iF % (ro,ry),

(2.21a)
(2.21b)

while those for the matrix F(r,,7,) are [cf. in Ref. 65 Eqgs.
{6.10a) and (6.10b) and the discussion on p. 21 of how the F/
matrix depends on the lower limit of integration in the defin-
ition of the w integral] -

Fi(ryr)) = —iexp( — 2IL)YF¥ (ryr), (2.22a)

Fo(ryr) = —iexp( + 2IL)YF% (ryr), (2.22b)
where L is defined by

L= f 0(rydr. (2.23)

The reason why L appears in (2.22a) and (2.22b) butnot in
(2.21a) and (2.21b) is that w(z,) = L while w(#,) = 0; see
Fig. 1. The symmetry relations (2.21a), (2.21b) and
(2.22a), (2.22b) are easily obtained from Egs. (5.9a) and
(5.9b) in Ref. 65 and our expression (2.20) for w(r). We
remark that in the limit r,— + O the matrix elements in
(2.21a) exist and are finite, while those in (2.21b) tend to
infinity; see Egs. (4.52)—(4.5d) in Ref. 65.

The elements of the matrix F(r,,7;) can be estimated on
the assumption that the following condition is fulfilled.
There exists a path A connecting 7, and 7,, along which the
absolute value of exp [ w(r)] has precisely one extremum
and for which the y integral, defined by (2.19), is much
smaller than unity. This condition is in general fulfilled if r,
and r, do not lie too close to the turning point #,. In Fig. 2 it is
shown qualitatively how the path A may proceed. We have
indicated by arrows on A the directions in which the abso-
lute value of exp [/ w(r)] increases monotonically. On the
real axis between ¢, and ¢,, the absolute value of exp [ w(r)]
is constant. The estimates obtained for the diagonal elements
of F(ry,r,) are

|Fy (ro,ry) — 1< + higher powers of g, (2.24a)
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FIG. 2. How the path A, used to obtain the estimates (2.24a), (2.24b) and
(2.26a), (2.26b), may proceed from r to r, and from r, to r,, respectively, is
illustrated qualitatively. The points », and 7, denote the positions of ex-
trema for |exp[/ w(r) ]|, and the directions in which this function increases
monotonically are indicated by arrows.

|[Fayp(rory) | <exp2 Jw(rg)|]

X[Lpx + higher powers of u]  (2.24b)

ifu € 1. According to these estimates and the symmetry rela-
tions (2.21a) and (2.21b) we thus have
F]](r()yrl) zly

Flz(l‘o,r;) ::',.i,

(2.25a)
(2.25b)

whereas the absolute values of the elements F,,(r,,7,) and
F,,(ry,r)) usually become very large, since the factor
exp [2 |w(ry)|] rapidly increases when the point r, moves
away from the turning point #,.

Similarly, the elements of the matrix F(r,r,) can be
estimated on a corresponding assumption; see Figs. 1 and 2.
The estimates thus obtained for the diagonal elements of
F(ryr,) are

|F,{ryr,) — l|<u -+ higher powers of u, (2.262)
|Fy(rppry) | <exp{2 K(r,)}
X [4 p + higher powers of u], (2.26b)
where i <1 and K (r,) is defined by
K(ry) =f t‘Q(r)dr=f§Q(r)]dr. (2.27)

Note that since the path A in the definition (2.19) of the u
integral is different for (2.24a), (2.24b) and (2.26a),
(2.26b), u does not denote the same quantity in (2.26a),
(2.26b) as in (2.24a), (2.24b). Since u €1 while in general
luexp[2 K(r,)]» 1, we obtain from (2.26a) and (2.26b)

F(ryr) =1,
Foy(ry,r)) Lexp [2K(r) ],

(2.28a)
(2.28b)

r, being assumed to lie well to the right of ¢,. For clarifying
illustrations of the estimates discussed above, we refer to
Ref. 66.

1. EXACT QUANTIZATION CONDITION

Consider the radial Schrodinger equation (2.1), i.e.,

2
Y | Ring=0,

=2 (3.1
where, with obvious notation,
R(r) = 2m/#)[E—V(r)] —I(I+ 1)/ (3.2)
The boundary condition
Y(0) =0 (3.3a)
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selects a solution of the differential equation (3.1), which is
unique except for an arbitrary constant factor. The farther
boundary condition

pertaining to the compressed atom enclosed in a sphere of
radius a, yields a quantization condition. The problem of the
compressed atom under consideration is thus defined by the
differential equation (3.1) with (3.2) and the boundary con-
ditions (3.3a) and (3.3b).

In atomic problems it is in general appropriate to con-
sider the potential in which the electron moves to be real.
Therefore, and also for the sake of simplicity, we restrict
ourselves to assuming the potential ¥(r) in (3.2) and hence
R(r), as well as the square Q 2(7) of the base function Q(r),
introduced in connection with (2.5), to be real on the real r
axis. We shall use the terminology “classically allowed” and
“classically forbidden” regions (in the generalized sense)
for regions where Q %(r) is positive and negative, respective-
ly, and we shall use the term “classical turning point” or
simply “turning point” (in the generalized sense) for a point
where Q?(r) = 0. This conforms to the terminology intro-
duced on p. 34 in Ref. 65, although some notations used here
are different, as explained in the beginning of Sec. II.

We shall start by expressing the exact solution ¥(r) ful-
filling the boundary condition (3.3a), i.e., ¥(0) =0, in
terms of the two linearly independent phase-integral func-
tions defined by (2.2a) and (2.2b) with (2.3), where we
choose g(7) to be given by the first-order approximation of
(2.5), i.e,, g(r) = Q(r). When the conditions (2.8a) and
(2.8b) are fulfilled, and Q2(r) is negative for sufficiently
small, positive values of 7 (see Fig. 1), the coefficients a, (r)
and a,(r) in (2.9a) and (2.9b), corresponding to a solution
¥(r) of the differential equation (3.1) fulfilling the bound-
ary condition ¥(0) = 0, are given by the formulas

a,(r) =Fy,(r, + 0)a,( +0), (3.4a)
a,(r) = Fpy(r, + 0)ay( + 0). (3.4b)
Inserting (3.4a) and (3.4b) into (2.9a) and using (2.2a)

and (2.2b), we get the following expression for the exact
solution ¥(r) fulfilling the boundary condition (3.3a):

Y(r) = (Fy,(r, + 0)exp[2i w(r)]

+ Fp(r, + 0))ay( + 0)f(r), (3.5)

where w(r) is defined by (2.3) with ¢(r) = Q(r). Introduc-
ing now the further boundary condition (3.3b), i.e.,
¥(a) = 0, pertaining to the compressed atom with the ener-
gy levels E¢, we obtain from (3.5) the quantization condi-
tion

Fy,(a, + 0)exp[2i w(a)] + Fy;(a,+0) =0, E=E.
(3.6)

If we let the radius 4 tend to infinity, the second term in the
left-hand member of (3.6) becomes negligible compared to
the first term, and we arrive at the quantization condition
Fi,( + o,+0) =0 or, according to (2.17), F;,( +0,
+ o) =0, valid for the uncompressed atom; cf. Eqgs.
(10.13) and (11.17) in Ref. 65. Our aim is now to bring the
exact quantization condition (3.6) into a convenient form,
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which allows us to obtain the energy eigenvalues of the com-
pressed atom, and to ensure that the formula we obtain for
the small energy shifts, caused by the compression, yields
significant results.

The qualitative behavior of the function Q 2(r) for the
situation we are considering is illustrated in Fig. 1. Since in
the present section we use the first-order approximation, we
can choose the lower limit in the integral (2.3) to be the
turning point ¢, in Fig. 1, and thus we define w(r) by (2.20),
ie.,

w(r) = I’Q(r)dr.
%

With the phase of Q(7) chosen as indicated in Fig. 1, we
obtain from (3.7), when r, is a point lying to the right of the
turning point #, in Fig. 1, the formula

3.7

w(r) =L —iK(r,), r,>t, (3.8)
where L, defined by (2.23), i.e,
ty
L= J Q(r)dr, (3.9a)
%

is a positive quantity independent of r, but dependent on the
energy, and K(r,), defined by (2.27), i.e.,

K(r,) = f i0(rdr = J' ‘lo|dr,

is a positive quantity dependent on r, as well as on the ener-
gy .

(3.9b)

Considering the upper half of the complex r plane, let-
ting 7, be a point in the classically forbidden region to the left
of t,, letting », be a point in the classically allowed region
between ¢, and ¢,, and recalling that 7, is a point in the classi-
cally forbidden region to the right of ¢, (see Fig. 1), we shall
write in convenient forms first F,(r,,7,) and Foy(ry7,),
when r,= + 0 and r =r,, and then the factor involving
those quantities on the right-hand side of (3.5). To this pur-
pose we use the multiplication rule (2.15) with r replaced by
r, and the inversion formula (2.17) with  replaced by r;,
getting the identities

Fiy(ryre) = — Fyy(ryr)Fip(rer)

+ Fiy(rr ) Fyy (rory), (3.10a)
Fop(ryrg) = — Fpy(ro,r )F 1y (ro,ry)
f + Fop(rpyr ) Fyy (Fo,ry). (3.10b)

We next rewrite these identities with the aid of symmetry
relations. Inserting (2.21a) and (2.22a) into (3.10a), and
inserting (2.21a) and (2.22b) into (3.10b), we obtain after
some rearrangements

Fiy(ryrg) = —iexpl — i(L — yr) Y(Fy (rpry)
XF (ror)expli(L —jm) ]
— F3y (rpr ) Fyy (rry)expl — i(L —im) 1)
=2exp[ — i(L — }m) ] Im(F,,(ry,ry)
XFY (ror)expli(L —im)]1) (3.11a)

and
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Fyy(ryry) = expli(L —1m) ]
X(F % (ror ) F ¥ (ror)expli(L — 4m) ]
+ Fap(rpr ) Fyy (ror)expl — i(L —4m) 1)
=2 expli(L — 17) ]Im(iF %, (r2,7,)
XF¥ (ror)expli(L — im)]).
With the aid of (3.8) we obtain from (3.11a):
F,(ryrg)expl2i w(r,) ]
= —2exp[2K(r,)Jexpli(L — #/2) [Im(F,,(r,r,)
XF¥ (ror)expli(L — w/2)]). (3.12)

We shall now rewrite (3.11b) into a more convenient
form. To this purpose we note that, by means of the symme-
try relations (2.22a) and (2.22b), the relation (2.16) yield-
ed by the determinant of the matrix F(r,,7,) can be written
as follows [cf. Eq. (6.11) in Ref. 65]

(3.11b)

Re(F¥ (rypyr ) F (ryr)) =14 (3.13)
Therefore
FY (rpr)F3 (ryry) =%+i1m[F?‘1 (ror )F% (rpr) |
(3.14)
and hence
. ' F%(ryry)
th‘z(rz,rl)zF“(rz,rl)( ! > — Im AL )
2|F11(r2,"1)| Fy (ryr)
(3.15)

Inserting (3.15) into (3.11b), we obtain
Foy(ryrg) = —2exp[2 K(r,) Jexpli(L — 7/2)]
XIm[Fu("z»rl)FTl (roo?1)

Xexpli(L — 1m)1(8,(rpry) — i8,(ryr))],
(3.12")
where
81(ryry) = expl — 2 K(r)1/|Fy (rpr) % (3.16a)
8,(rpry) = Im(F ¥, (ryr)expl — 2 K(r,) 1/F,(rry))-

(3.16b)
Adding (3.12a) and (3.12b), we obtain
Foo(ro,rg) expl2i w(ry) ] + Fy(ryr,)
= —2exp[2K(ry)] exp[i(L —im)]
XIm([ (1 + 8,) — i8,1F ¥, (ro,r1 ) F11 (720y)
X exp[i(L — 1m)]). (3.17)

Since the conditions (2.8a) and (2.8b) are assumed to be
fulfilled, and since Q?(r) is negative for sufficiently small
positive values of 7, the relation (3.17) with (3.16a) and
(3.16b) remains valid when r,— + 0, since all F matrix ele-
ments appearing in these formulas remain finite and well
defined when r,— + 0; see Chap. 4 in Ref. 65. Putting
ro = + 0, we thus obtain from (3.17):

F(ry, + 0)exp[2i w(r,)] + Fry(ry, +0)
= —2exp[2K(r,)]
Xexpli(L —1m) 1| Fy, ( + O, ) Fyy (r7)) |
X([1 4 8,(ror) 1 + [8,(rpr) 172

xXsin[.L (r,E) — 7/2], (3.18)
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where

f(rz,E)=L+arg_El_1(rirll__arctan 8,(ryry) ‘

F,(+0,r) 1+ 8,(r,ry)
(3.19)

It should be noted that all formulas (3.10)—(3.15) and
(3.17)—(3.18) are identities and thus valid for any value of
the energy.

For later use we shall now give some formulas for the
quantity defined by (3.19). From the definitions (3.16a)
and (3.16b), the estimates (2.28a) and (2.28b), and the fact
that exp[ — 2K(r,)] tends to zero as r,— + oo it follows
that 8,(r,,r;) is small compared to unity and that §,(r,,7,)
tends to zero as r,— + <. From (3.19) it therefore follows
that
ZL(0,E) =L + arg[F,,( + o0,r)/F;;( +0,r)]. (3.20)
Using (2.13)-(2.15) and (2.17), we find that

i F 1 1( + o0,7)
dr F,,(+0,r)
_ i Fzz(r, + o)
dr Fy(r,+0)
€(r)Q(r)exp[2iw(r)]
2[F,(+0,n]>
Recalling that the quantization condition for the uncom-
pressed atom is Fi,( + 0, + ) = 0 [cf. Eqs. (10.13) and
(11.17) in Ref. 65], we conclude from (3.21) that the quan-
tity F;,( + o0,r)/F,,( + O,r) varies rapidly with r unless E
is an eigenvalue of the uncompressed atom. With the aid of
(3.20) we can rewrite (3.19) as follows:

=F12(+0,+°0) (321)

8,(ryry)
1 4 8,(77))
Fy (ryr) )
F,(+ o0,r)

L(ry,E) =% (w,E) — (arctan

— arg (3.22)

and hence we obtain
6 (a,ry)

1+ 8,(a,r))

F, (a,r) )
Fi,(+ o,r))

L(E)=.L(w0,E) — (arctan

—arg (3.23)

and

8,(ryry)

1+ 8,(rpry)
Fy (rpry) )

Fii(+ oo,m)
é.(a,ry)

1+ 8,(a,ry)

— arg _Fu@ry )
Fu( + 00:’1)

L(r,E) =L (a,E) — (arctan
— arg
+ (arctan

(3.24)

As weshall see in Sec. V, the factors multiplying the sine
in (3.18) are all different from zero when r, lies well to the
right of ¢,. If the point a also fulfills that condition, the quan-
tization condition (3.6) is thus equivalent to
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sin[ £ (a,E) —7/2] =0, E=E};. (3.25)
Therefore the exact quantization condition for the com-
pressed atom: is

L(a,ES) = (s+ (3.26)

where s is an integet, which is non-negative, since the dom-
inating term in the expression (3.19) for .¥ (r,,E), when E
is an eigenvalue, is the positive term L. The exact quantiza-
tion condition for the uncompressed atom is

L(0,EL)=(s+ 1. 3.27)
Subtracting (3.27) from (3.26) and using (3.23), we obtain
ZL(0,E}) — L (0,E)

Si(ar)
1+ 8,(ar;)

Fylary) )
Fi(+ o,ry) /E=ES
(3.28)
This is a convenient exact relation from which an approxi-
mate analytic expression for the energy shift will be derived
in Sec. V.

= (arctan

IV. EXACT FORMULA FOR THE NORMALIZATION
INTEGRAL

We shall now assume that the function R(r) in the dif-
ferential equation (2.1) depends on a parameter E, which
can for the moment be left unspecified. Let ¥(7) and ¥(7) be
solutions of the differential equation such that

¥(0) =0 for every E, (4.1)

(@) =0 for every E, (4.2)
and

W(r)=9(r) for E=E?, (4.3)

E ¢ being an eigenvalue of the differential equation for the
interval (0,a); see (3.3a) and (3.3b). Under these assump-
tions one obtains from the work by Furry®® and Yngve® the
formula '

[ wor), o= (55,
(4.4)

where W(E) is the Wronskian

W(E) = (¢ (r) — (Y (1), (4.5)
a prime denoting differentiation with respect to 7. In the
particular case when R(r) is given by (3.2), formula (4.4)
simplifies to a formula for the normalization integral:

# [ dw
E ) dr= ——-( —) .

J:W(r 1" dr 2m\ dE /E=E:

The wave function ¥(r), which fulfills the boundary
condition (4.1), and its derivative 3’ (7) are given by (2.9a)
and (2.9b) with f,(7), f,(r) given by (2.2a), (2.2b), and
(2.3),anda,(7),a,(r) givenby (3.4a) and (3.4b). Similarly
the wave function ¢(r), fulfilling the boundary condition
(4.2), and its derivative ¢'(r) are given by

H(r) =3, (Nfi(r) + 3,17,
() =a,(nf; (1) +a@(nNf350),
where the condition (@< o)

(4.6)

(4.7a)
(4.75)
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a(a) = — [ fi(a)/fy(a)]a,(a)

= — exp[2iw(a)a,(a) (4.8)

must be fulfilled because of the requirement (4.2) and the
definitions (2.2a) and (2.2b).

_ Weshall now evaluate the Wronskian (4.5) of (r) and
(7). Inserting (2.9a), (2.9b), and (4.7a), (4.7b) into
{4.5), we obtain the formula

W= (a,a, — a,@)) (fi.f5 =/ f 1), (4.9)
which, with the aid of (2.4), can be written
W= —2i(a,a, —aa,). (4.10)

Itis well known that the Wronskian Wis independent of
r, and we can therefore evaluate it for 7 = q. Inserting thus
(3.4a) and (3.4b) with » = g and (4.8) into (4.10), we ob-
tain

W = 2i(F\,(a, + 0)exp{2i w(a)]

+ Fyy(a, + 0))ay( + 0)a,(a). (4.11)
The requirement (4.3) implies that
a,(a) =a,(a) for E=E?, (4.12)
which combined with (3.4a) yields
@,(a) = Fpy(a, +0)ay,(+0) for E=E%  (4.13)

Using (4.11) and (4.13), and recalling the quantization
condition (3.6), we obtain from (4.6)

f[g&(r;Ei)]z dr
0
=iﬁ2.[[a2( + 0)1*Fy,(a, + 0) -19—-{F (a, +0)
m gE" ™7

Xexp [2i w(a)] + Fyy(a, + 0))] (4.14)

E=E2
Inserting (3.18) with r, = a into (4.14), and recalling that

the eigenvalues-E ¢ must fulfill the quantization condition
(3.25), we obtain

L [HRED]? dr

= — 2’;:2[[112( +0)]? exp[2K(a)]
Xexpli(L — w/21F,(a, + 0)|[Fy,( +0,rp)

XFy(ar)|([1 + 8,(a,r) 1 + [6,(a,r;) 132

a . [ T
X =sinf (@, E) — — . .
JE .= (@) 2”E=E: (4.15)
From (3.11a) with 7, = + 0 and 7; = a we obtain
Fi,(a,+0)
=26xp[—i(L—ﬂ/Z)]IFu(a”'l)Fu(+0,rl)|
) Fy(ar)
><sm(L—£+ar St ¥ Lt it X ) (4.16)
2 " B+ o

With the aid of (3.19), (3.26), and (3.16a) we obtain from
(4.16) when E=E?
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Fpla, +0) =2expl —i(L —w/2)}|Fy(a,r)F (4 0,r)]|sin (f(a,E;’) - —g + arctan
= 2 exp{ — i(L — w/2)1|Fy,(a.r ) F i, ( + 0,y )|sin (s77+ arctan

=2 exp| ‘-i(L“‘“’”'/2)HFn(a’rx)Fn( +09r1)‘( -1

= (

1y exp| — (L —w7/2)Jexpl — 2 K(a)}|F { +0,r))]
lFll(a’rl)I{[l +62(a’r1)]2 -+ [51((1,7'1)]2}”2

Inserting (4.17) into (4.15) and using the exact quantization condition (3.26), we obtain

2

a 2
f [$(rED | dr="" ([az( +0) exp( = —i—m’)} (o (+ 02 SLL2E) )E N
0 .

m

For the uncompressed atom, i.e., for @ = o, we obtain from (4.18)

- 2
f [¢<r;Ef>]2dr=“([az< +0) e""(‘%’”’)] B+ 0 SEleE) ) £
o = s

297
m
Introducing the normalization conditions

fa[;b(r;Ej)]zdr=J;m[¢(r,E;°)]2dr: 1,
(4]
we obtain from (4.18) and (4.19) the exact formula
[4(+CGEH ) — [a(+GES)]?
[a.( +GEH T
_ V[a(+0E =1/ [a(+0ED]?
B 1/ [a,(+OE)]?
(1F, ( +0,,)]? 3L (0,E)/OE)

E=FEF

(IF ( +0,,)? 8. (0,E)/3E)

51(‘1”‘1) )
1+8,(ar)
1+ 52(”#‘1)
o(a,r)
{[1 +52(Q,r1))2 ~+ [81(07"})}2}”2
, E=E- (4.17)
4.18
3E (4.18)
4.19
3E (4.19)
4.20)
—{|Fy,( + 0,207 (a,E)/E), _ .
Y (4.21)

E-EF

for the relative change of the square of the normalization factor of the wave function, due to the compression of the atom.

V. DERIVATION OF APPROXIMATE FORMULAS FOR
THE ENERGY SHIFT DUE TO THE COMPRESSION OF
THE ATOM

We shall first derive a sufficiently sharp estimate for the
last term on the right-hand side of (3.22). Using (2.13),
(2.14), (2.22b), (3.8), (3.15), and the definitions (3.16a)
and (3.16b), we obtain

ad
’é;z‘Fn(rprl)

=M (r)Fy(ryry) + My () Fyy ()

= JIQ(ry)eo(ra) (Fy (ror))
+expl — 21 w(ry) 1F,y(ryry))

= LQ(r))eo(r) Fiy(rpr )1 —iexpl — 2 K(ry)]
XEF% (ryr )/ Fi(ryr))

= UQ(r)eo(r) Fy (rpry)
X1+ 8,(rpry) — i8,(7y1y)),

ie.,

ad
E‘;lnF“(rz,rl)
=1iQ(r)e(r)(1 + Oy(rary) — b, (ryr)).

From (5.1) it follows that

(5.1)
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f
InFy ( + o0,7y) —In Fy(ryry)
:.—f %‘I.Q(I‘z)fo("z)(l + 85 (ror1) — i8,(ryr))drs.
: (5.2)

In the integrand of (5.2), 6,{r,,r,) and iQ(r,) are positive,
and €,(r,) and 8,(r,,7,) are real. Hence, taking the imagi-
nary part of (5.2), we obtain

arg Fii(rar) :f

* 1
Fi(+ w,r) E‘[Q(rz)|€°(r2)5l("2”"1)d"2-

(5.3)

Using the definitions (3.16a) and (3.9b) and the estimate
(2.26a), we obtain from (5.3) the estimate

Fi(rry) 1
Fn( + 00,F)
<exp[ — 2K(r,)]

arg

Xfwleo(rz)Q(rz)jdr2<exp[ —2K(r)}. (5.4)

For a discussion of the smaliness of the g integral in the
second member of (5.4) [cf. (2.19) ] we refer to Refs. 65 and
66. The result (5.4) isa crucial estimate that makes it possible

to neglect the second term in the right-hand member of (3.28),
as will be demonstrated below.
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From the definitions (3.16a), (3.16b) and the estimates
(2.26a) and (2.26b) it follows that §,(7,,7; ) is approximate-
ly equal to exp| — 2K(7,)]1/2 and that 6,(7,,7,) is much
smaller than unity. Thus we have

8,(rpry) 1
————————— P — .
1 82(r2,r,)~_e2 xp[ — 2K(r;)]

By means of (5.4) and (5.5) with », =
(3.28) the approximate formula

L(0,El) — L (0,EF)=bexp] —2K(a)], (5.6)
where, because of the approximations introduced, it is ap-
propriate to evaluate K(a) for E=E .

Since the difference E¢ — E  is very small, we can re-
place the left-hand member of (5.6) by the first term in its
Taylor series, getting

[ aj(w,E) ] (Ea
E=E?®

arctan (5.5)

a we obtain from

2K(a)}.
(5.7)

Considering the quantum number s as a continuous variable,
we obtain from the quantization condition (3.27) the ap-
proximate formula

[az(w,E) ] T
E=Ep dE“’/ds

by means of which we obtain from (5.7) the approximate
formula

Er)= —exp[

(5.8)

Eo—ge~L 9E:
27
The quantity dE °/ds can be obtained from spectroscopic
data for an actual uncompressed atom or from calculated
values of E © for a model of the uncompressed atom.

We shall now derive an alternative approximate for-
mula for E¢ — E ? by evaluating the left-hand member of
(5.6) in another approximate way. For the bound states, L is
at least of the order of unity, while the absolute values of
Fy;,( +0,ry) — 1 and F;,( + o,r;) — 1 are much smaller
than unity according to the estimates (2.24a) and (2.26a)
with 7/, = + 0 and , = + «. Hence the absolute value of
arg[F;,( + o0,r,)/F;;( + 0,r;)] is much smaller than L. It
is reasonable to assume that the same is true for the energy
derivatives of these two quantities, and therefore the energy
derivative of L + arg{F,,( + «,7)/F;;( +0,r,)] is ap-
proximately equal to the energy derivative of L. One can also
express this by saying that arg[F;; ( + o0,r)/Fy( +0,ry)]
changes much more slowly than L when the energy changes.
From (3.20) it therefore follows that the expression in the
left-hand member of (5.6) can be approximately replaced by
L (E$) —L (EZ) . Thus we obtain

L(E) —L(E7)=lexpl —2K(a))z_ .. (5.10)
Approximating the left-hand member of (5.10) by the first
term in its Taylor series, we obtain

Ee—E~ =(exp[ —ZK(G)])
g : 290L/3E JE=Eg

Assuming that @ 2(#) — R(r) is independent of E, we obtain
from (3.9a) and (3.2)

(expl —2K(@) 1) _ o (5.9

(5.11)
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" dr
[ ﬁz O E" ) (5.12)
We remark that when Q %(r) is equal to R(r), the quantity in
the right-hand member of (5.12) is equal to T /(2#), where
T is the time for a complete classical oscillation forth and
back in the radial potential well. Inserting (5.12) into
(5.11), we obtain

E=Ep

Eg_-E;oz_ﬁi(M) . (5.13)
2m\ 2 Q"' rdr Je-rr

The denominator in (5.13) can be calculated when the phys-
ical potential ¥'(r) isassumed to be known, and a convenient
expression for Q2(r) — R(r) is used; see (3.2).

The generalization to phase-integral approximations of
arbitrary order will be considered in Sec. VIII of the present
paper. However, we remark already at this point that the use
of higher-order phase-integral approximations in (5.9)
changes only the expression for K(a), while in (5.13) also
the denominator in the right-hand member changes.

V1. DERIVATION OF AN APPHOXIMATE FORMULA FOR
THE RELATIVE CHANGE OF THE NORMALIZED WAVE
FUNCTION, DUE TO THE COMPRESSION OF THE ATOM

According to (2.24a) we have the estimate

Fy;(+0,r) =14+0(u) 6.1)
and hence
9L
|F11(+0,r,)|2——é££+E-)-
3% (a,E) 3% (a,E)
=} O(u)————=. 6.2
g T OW g (62)

In the right-hand member of (6.2) the term O(u)
9% (a,E)/JE is much smaller than the term 3.¢ (4,E) /JE,
and therefore O(u) 3.7 (a,E)/E should change much
more slowly than 3.7 (a,E)/JE when the radius @ and the
energy E change, unless strange cancellations occur. There-
fore we obtain from (4.21) the approximate formula

[a2( +0.ES)]* ~ [a:( +0E)]”
[a.( +O.EY) ]2
[0 (e0,E)/OE ), _ po ~ (0L (a,EV/OE | g _ .
(0.2 («,E)/0E 5 _5. '

~
~

(6.3)
From the quantization condition (3.26) one obtains the ap-
proximate formula

(af(a,E)) __ T
dE Je-r: dE%/ds’

a(w, (6'4)

with the aid of which (6.3) gives the approximate formula

[a:(+GEN ] — [a:(+OGER)]* . dEZ/ds
[a,( +OGE?)]? dE?/ds
(6.5)

Putting
a(+0,E?) +a,( +0,E)=2a,( +0,ES), (6.6)
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we obtain from (6.5) the approximate formula

a,(+GE:) —ay(+0E) _i(l_dEf/ds)

a,( +GE?) 2 dE;’/ds(67)

This simple formula for the relative change of the normal-
ized wave function, due to the compression of the atom, is
not quite unexpected, in view of the known formula for the
normalization factor of an atom; see Eq. (24) in Ref. 79.

VIi. DISCUSSION OF APPROXIMATE EXPRESSIONS
FOR THE WAVE FUNCTION OF THE COMPRESSED
ATOM

For the purpose of the investigation in the present paper
it is not necessary to have approximate expressions for the
wave function ¢(r) in the intervals 0<r < ¢y, ;<7 <¢;, and
t, < r<a, but it is instructive to discuss the effect of the com-
pression of the atom on the approximate expressions for the
wave function in these intervals.

By means of the inversion formula (2.17) and the basic
estimates (2.18a) and (2.18b) we obtain from (3.5) the ap-
proximate formula

lﬁ(")zaz( +0)f2("o), 0<ry <ty (7.1)

The wave function in the interval £, < ; < ¢, can then be
obtained by means of the connection formula which is given
by Eq. (8.21) in Ref. 65. The result can be written

Y(r)) =a( +O)exp( — in/4)(exp( — in/4)fi(ry)
+ exp( + in/8)fo(r)), o< <t (7.2)
We shall now consider the wave function in the interval

t, < r,<a. For E = E? we obtain from (3.18), (3.24), and
(3.26)

Fy,(ry, + O)exp[2iw(r,) ] 4 Fyp(ry, + 0)
=2 exp|2K(r,) Jexp{i[L — (s + L)1}
X|Fy (4 0,7 Fyy (ra0ry) |
XL+ 8,(rpr) 12 + [8,(raury) 1212

Xsin[(arctan _M_) —arg Fi (ryry)
1+ 6,(rpry) F (+ oo,ry)
- (arctan—-é‘—(—‘fﬂz—-_ arg__.&ga;rl.)__)]
14 6,(ar) Fi (4 w,ry)

E=E° (7.3)

When exp[ — 2K(a)] <1 we obtain from (3.19), (3.26),
(5.5), (2.24a), and (2.26a)

L=(s+))m, E=E (7.4)

and when exp[ — 2K(r,)]<€1 we obtain from (3.16a),
(3.16b) and (2.26a), (2.26b)

([148,(rpyr) 12 + [8,(rpr) 12 = 1. (7.5)
Using (7.4), (7.5), (2.24a), (2.26a), (5.4), and (5.5), we
obtain from (7.3) the approximate formula
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Fio(ry + 0)exp{2iw(r) ] + Fp(ry, +0)

~2exp[2 K(r,)]sin{fexp[ — 2 K(r;)]

— lexp[ —2K(a)])

~exp[2 K(r,) Hexp[ —2K(r,)] —exp[ —2K(a)])

=1—exp{ - 2[K(a) —K(r,)1},
exp[ —2K(r) 1«1, E=E2 (7.6)
Inserting (7.6) into (3.5) with r replaced by r,, we get
¥(r)) =(1 —exp{ — 2[K(a) — K(ry) |}a,( + 0)f5(r,),
exp —2K(r,)1<l, E=E° (1.7)

In the last member of (7.6) and in (7.7) the quantity
exp{ — 2[K(a) — K(r,)1} is significant compared to unity
only as long as 7, does not move away too far from a. Hence,
when the point 7, lies sufficiently far away from the point g,
one should replace (7.7) by

Y(r) =a,( + 0)f(ry),

exp[ — 2K (a)] €exp[ — 2K(r,) 1«1, E=E°"
(7.8)

From (7.1), (7.2), (7.7), and (7.8) we see that the
compression of the atom affects not only the energy and the
normalization factor but also the analytic form of the phase-
integral expression for the wave function in the part of the
interval f, <r<a, where exp[2 K(r) — 2 K(a)} is not too
small compared to unity. We also remark that the formulas
(7.1) and (7.8) are in agreement with the resuit that for an
uncompressed atom ¥(r) =a,{ + 0)/5(7) for E = E  when
rlies well to the left of 7, as well as when r lies well to the right
of t,; see Ref. 70.

VIIl. GENERALIZATION TO APPROXIMATIONS OF
ARBITRARY ORDER

We assume that the function R(7) in the differential
equation (3.1) fulfills the condition (2.8a) and that the base
function Q(r) is chosen in agreement with the condition
(2.8b). The arbitrary-order phase-integral approximation,
obtained from (2.2a), (2.2b), {2.3), (2.5), (2.6a)-(2.6c)
[for 2N 4+ 1 == 1,3,5], and (2.7), remains then valid in the
neighborhood of r = 0.

Assuming that on the positive real r axis the function
Q?(r) has two well-separated zeros f, and ¢,, between which
Q?(r) is positive, and choosing the phase of Q(r) asshown in
Fig. 1, we introduce the definitions

1
L=— ridr,
2J;q()r

where I' is the closed contour of integration shown in Fig. 1,
and

t < rka,

t,<rxa,

L<r<a,

(8.1)

K(ry) = —LIJ q(r)dr, (8.2)
2 Jre

where I'(r,) is the nonclosed contour of integration shown

in Fig. 1. With the aid of (2.5) we can rewrite (8.2) into the

form

N
K=Y K@+ V), (8.3)

n=0

where
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K(2n+1)(r2)v=_l_.if Yz,,Q(r)dr'
2 Jroy

For N =0 the definitions (8.1) and (8.2) go over into
(3.9a) and (3.9b), respectively.

The results in the previous sections of the present paper
can now directly be generalized to apply to phase-integral
approximations of arbitrary order. To this purpose it is only
necessary to replace the definitions (3.9a) and (3.9b) by the
more general definitions (8.1) and (8.2), respectively. The
results (5.9) and (6.7) remain then valid, while in (5.13)
one has to replace the integral over Q ~'(r) from ¢, to ¢, by
half of the integral of g~ ' (r) over the contour I'; see Eq. (9)
in Ref. 80. We note that the order of the phase-integral ap-
proximation used enters into (5:9) only via the value of
K (a), obtained from (8.2) with (2.5)-(2.7), but does not
appear at allin (6.7) unless the eigenvalues are calculated by
means of the phase-integral method.

(8.4)

IX. APPLICATION TO A HYDROGENIC ATOM

For a hydrogenic atom with the charge number Z the
potential ¥(r) in (3.2) is the attractive Coulomb potential

V(r) = — Ze/r, (9.1)

where ¢ is the electron charge. Choosing Q %(7) according to
(2.8b’), we obtain from (3.2) and (9.1)

1 _2m g _a+p?
ar = B Vinl——5F—.

cgs units,

Q%(r) =R(r) -
(9.2)

When Q 2(7) is chosen according to (9.2), the quantiza-
tion condition

L=(s+Dm, (9.3)

where L is defined by (8.1), yields the energy levels of the
uncompressed hydrogenic atom exactly in the first-order ap-
proximation (according to pp. 117-119 in Ref. 65), and
since the higher-order contributions to L vanish, the exact-
ness remains in all orders of approximation. Inserting Q(r),
obtained from (9.2) and with the phase shown in Fig. 1, into
(8.1), and introducing instead of the electron charge e the
Bohr radius g, defined by

a, = #/(me*), cgs units, (9.4)
we obtain
Z*#/(mad) )“’ ( 1 ]
L=\ ————) —-(I+=]|~ .
K e +2)r (9.5)

Inserting (9.5) into (8.3), we find that the energy levels of
the uncompressed hydrogenic atom are given by the well-
known exact formula

Er = — [Z°#/(ma})]/2n?, (9.6)
where ‘

is the principal quantum number for the uncompressed hy-
drogenic atom. We now introduce the effective principal
quantum number 7, for the compressed hydrogenic atom by
writing in analogy to (9.6)
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E?= — [Z%#/(ma})]/2n. (9.8)
As a tends to infinity, n, must obviously tend to ».
From (9.6)—(9.8) we obtain the exact formula
E: - Esw n, a
_ nln, +n)(n, —n) . (9.9)

dE = /ds 2

Noting that n, is very close to n (since g is assumed to be
sufficiently large), we obtain from (5.9) and (9.9) the ap-
proximate formula

n, —n=(1/27)(exp[ — 2K(a)])E=E:,. (9.10)

We shall now evaluate the quantity K(a) for E=E
up to the third-order approximation. To that purpose it is
convenient to introduce as unit of length a,/Z, which is “the
radius of the first Bohr orbit” for the hydrogenic atom with
the charge number Z. Therefore we define

F=Zr/a,, (9.11)

and put E=E ? in (9.2). From (9.1), (9.2), (9.4), (9.6),
and (9.11) we obtain

2
Q(r)d":(“;l"z""%—‘ (l'; ) )1/2d;’ E=E:°.
r
(9.12)

It can easily be shown that the functions Y,, in (2.6a)-
(2.6c) can be expressed in terms of the variable 7 and the
quantum numbers # and /. Hence K (a), given by (8.3) and
(8.4), can be expressed in terms of the quantum numbers n, /
and the parameter

a=Z2Za/a,. (9.13)

With the aid of (2.6a), (2.6b), (2.7'), (9.11), (9:12), and
(9.13), and with due regard to the contour of integration
I'(r,) shownin Fig. 1, we obtain from (8.4) withr, = a > ¢,,
after the resulting integrals have been evaluated in the first
and third order,

exp[ —2K P(a)]
___(a—n2+na|Q(a)|)"
a—n*>—na|Q(a)|
x( a— (I4+1)*>— (I +1)a|Q(a)] )’*"’
= 2
a— (+1)*+ (I +ha|Qa)
Xexp[ —2a|Q(a)|], E=E,

ZK(”(G)

(9.14a)

1
©12[n% = (1 +1?]{a|0@)| 1P

X(— & /n* + 6a% — 3(I +4)*a*/n’

—~3nfa—n*(+1*+20+D?% E=E?,

(9.14b)
where

a|Q(a)| = (@/m*—2a+ I+, E=E2.
(9.15)
In Fig. 3 the accuracy of (9.10), with (8.3) forr, =a
and N = 0and 1, (9.14a), (9.14b), and (9.15), is illustrated
for the states Is (n=1,7/=0),2s (n=2,1=0), and 2p
(n =2, /=1). The exact values of n, were obtained from
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FIG. 3. The relative error of n, — n, i.e.,

[(”a - ”)approx - (na - n)exac! ]/(”a - ”)exact

= [(na )Bpprox - (na)cxacl ]/(”a - ”)exacw

is plotted against 3/n* = Za/(ayn*) for the states 1s (n =1, /=0), 2s
(n=2,/=0), and 2p (n =2, /=1). The figure is based on the choice
(9.2) of Q*(r). As the radius a tends to infinity, n, tends to n, which is the
principal quantum number for the uncompressed hydrogenic atom. Full-
drawn lines correspond to positive errors and broken lines to negative er-
rors. It should be mentioned that each cusp in the figure actually corre-
sponds to an error equal to zero, although for practical reasons this is not
seen in the figure. The curves with the notations (1s), (2s), and (2p) give
results of the first-order phase-integral approximation, and the curves with
the notations 1s, 2s, and 2p give results of the third-order phase-integral
approximation. Characterizing the position of the right-hand turning point
by the parameter f, = Zt,/a,, we have

- 2.12, for ls,
hH_1203 for 2
225, for 2p.

(9.8) with the use of numerically calculated values of E¢.
From Fig. 3 itis seen that we obtain in general a considerable
improvement of the accuracy by taking the third-order cor-
rection into account. Furthermore, as the radius a decreases,
the approximations finally deteriorate and in fact break
down when a comes too close to the turning point £,.

For fixed / one finds from (9.6), (9.7), and (9.8) that
the ratio of the increase of the energy level £ * due to the
compression and the energy difference between the uncom-
pressed energy levels with the quantum numbers s and s + 1
is approximately

E{—E7  2(n41)

= (n, —n).
Er ,—E? n(2n+1)

The factor in front of #, — » in the right-hand member of
(9.16) is a monotonically decreasing function of # which is
equal to § for n = 1, equal to £ for n = 2, and equal to 1 for

= o0. The ratio in the left-hand member of (9.16) is there-
fore roughly equal to n, — n.

(9.16)
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An investigation of (nonadditive) scattering invariants in classical mechanics
and quantum theory by differential topological methods
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(Received 20 March 1986; accepted for publication 8 April 1987)

The structure of invariants of the scattering transformation in (relativistic and nonrelativistic)
classical mechanics and quantum theory is investigated and a constructive approach to finding
and classifying them by exploiting and developing certain differential topological methods is
provided. While, in the form of various by-products, results about the perhaps better known
so-called additive scattering invariants are (re)derived, the primary concern here is with the
less well-known nonadditive (i.e., several particle) conserved quantities.

I. INTRODUCTION

The computation of the so-called integrals of motion in
the classical mechanics of mass points is both a very old and
(at least in general) difficult problem. It is well known that
the number of independent integrals of motion for a closed
mechanical system with # degrees of freedom is 2rn — 1 (cf.
Ref. 1) with an additive time constant being eliminated. For
a Hamiltonian system a function feC ' depending on the posi-
tions {g, } and momenta { p, } is an invariant along every
path of motion iff

af _df
J Y Hf}=0 1.1
=t {H,1} (1.1)
with H the Hamiltonian and
dH Jdf JF Jdf
{Hf}=—"— 2L — .~ (1.2)
f ; apk aqk aqk aPk

Since we are in the following primarily dealing with sys-
tems in the usual Cartesian space we alter the notation
slightly denoting positions by x, , momenta by p, ,x, ,p, €R>
with p, = m, -x,. This implies that we will not rely on the
heavy abstract machinery being developed, for example, in
the book of Abraham® and more recent ones devoted to the
study of the properties of general dynamical systems. In-
stead we would like to emphasize a certain conceptual rela-
tionship between the things we will discuss and related prob-
lems in quantum scattering theory and quantum field
theory.

In this more general context one is interested in symme-
tries of the scattering matrix S and how classical mechanics
fits in a very natural way into this general scheme. One can
then ask a slightly more general question. Instead of looking
for physical quantities conserved along the whole path of the
system (with the necessary modifications of this picture in
quantum theory) one can direct one’s attention to symme-
tries or invariants of the S matrix, that is, observables asymp-
totically invariant under time evolution and approaching the
same limits along each trajectory for time #— + oo. Investi-
gations of the long time phenomena within classical mechan-
ics by means of notions and strategies developed originally in
quantum scattering theory can be found, e.g., in Refs. 3-6.
We want, however, to remark that our approach is so general
that it can be easily extended to more abstract dynamical
systems.

We assume an interacting and a free time evolution to be
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given defining flows ¢,,4;:

d,: (x(0),p(0))—(x(1),p(1)), x,peR>. (1.3)
We define the so-called “Moller transformations” Q _,

Q. := lim ¢ _,- 0, (1.4)

[
assumed to exist on certain sets D . CR®", which we expect
to be the set of initial conditions of all the free orbits up to
certain sets of Lebesque measure zero.

As in quantum theory the situation can be relatively
easily controlled in the two-body case or for single particle
scattering in an external potential. For the n-particle case
one has in principle to admit for the possibility of various
channels, i.e., clusters of “bound” particles moving freely in
the limits - 4+ «. While in our approach the number of
particles (resp. clusters) moving to infinity for - + oo is
allowed to differ from the number of “ingoing” ones, we
prefer to not overburden the formalism with these details
and assume that all particles are unbound as f— + . (The
necessary machinery to deal with bound clusters of particles,
e.g., channel Hamiltonians, cluster decompositions and all
that, can be found in Ref. 5 and is basically the same as in
quantum scattering.) Thus we have to exclude the initial
conditions for the free comparison dynamics (note that
these are the phase space coordinates at ¢ = 0), where some
of the relative momenta are zero. With this proviso we as-
sume the admissible initial conditions to be R®" up to sets of
measure zero (as to more details and the various notions of
asymptotic completeness in the single particle case we refer
the reader, for example, to Chap. X1.2 of Ref. 4).

The S transformation defined by

S:=(Q )=, (1.5)

then maps free asymptotes atf = — o onto the correspond-
ing ones at = + oo. The free orbits

(1.6)

are mapped by the Moller transformations onto the corre-
sponding time zero coordinates of the interacting system

xX0(8) =x°+p,/m, ¢

O, {x0p - {x:(0),p,(0)} (1.7)
called
{=i"pn}  (resp. {x?",p2"})

and the S transformation
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St {xp1yeeXnpn > {x1015- %000 } (1.8)
(where for notational simplicity we supress the superscript
0).

Remark: We discuss only the case of short-range poten-
tials. For long-range potentials the asymptotes have to be
slightly modified (cf. Ref. 4 Chap. X1.9).

Definition 1: Invariants of the .S transformation are
functions F such that (s.t.)

(i) F(xpyyesXpyPr) = F(X1P1sesXilh)s (1.9)
where the coordinates on the lhs and rhs are the pairs occur-
ring in a scattering event with the additional property of
being constant along free paths; i.e.,

(ii) F(x3(0)psyee.y (1)P,) = F(x] (2")p1yenes;, (2)P,)
(1.10)

(in principle we could admit an F', n’ different from F,n on
the rhs).

Perhaps a little bit surprisingly, quantum and quantum
field theory (without spin) can be treated along the same
lines. We assume a self-adjoint operator Q to be given on the
n-particle states of the free time evolution. If Q is the gener-
ator of a symmetry it usually can be represented on the free
states by a certain sum of terms consisting of products of
functions f; (x,,...,x, ) and expressions in d, ,....d, , i.e.,

0= fi(x1y%, ) Py (3100, )- (1.11)
i
If @ commutes with S we have
(@,S-Q¥) = (Qp,SY), (1.12)

which implies for the scattering amplitude S(x,,....X,;
X} ,..»X5 ) (actually a certain distribution)

[ Zf, (X150 5P (8 50ei05 ) — Zﬁ (X} 50exl)

X P;(0y, 50105, )} “S(X15e00sX ;X7 5e000X 0 ) =0 (1.13)

and a corresponding expression in momentum space which
is particularly useful for symmetries commuting with the
space translations. In this special case we get

{Pp,s-epn) — P}, 0 ) }S(pp’) =O0. (1.14)

If there is scattering at all, i.e., a certain open set on the
scattering manifold where S(p;p’) is nontrivial, the expres-
sion in the curly brackets has to vanish identically on this set,
a situation completely analogous to the classical one.

The investigation of symmetries of the § matrix fo-
cussed mainly on so-called additive or summation invar-
iants, notions being explained later, leading to perhaps a lit-
tle bit puzzling: “no go theorems,” usually of the tenor that
there exist no more additive invariants (apart from inner
symmetries) than the a priori ones already known. In quan-
tum field theory many papers were initiated by a result of
this type by Coleman and Mandula’ (cf. also Refs. 8 and 9
and previously Ref. 10). As to classical mechanics the his-
tory is of course much longer and we want to give only a few
references. Results of this type have been of particular inter-
est in kinetic gas theory (cf., e.g., Refs. 11 and 12), and
belonged in a certain sense to the general folklore in this
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field. The situation was then more carefully studied by
Grad,'? who remarks that the situation is far from obvious,
and quite recently by Amigo and Reeh,* where further ref-
erences (e.g., for relativistic dynamics) can be found. In this
context, with particular emphasis on relativistic particle
scattering, one should also mention the original approach to
the whole subject matter given in Ref. 15.

While our investigation will, in the form of various by-
products, also yield results about additive conservation laws
its main impetus is, however, directed towards the much less
well known but probably more important regime of nonad-
ditive scattering invariants. Since, for example, all 2n — 1
initial conditions are by definition invariants of motion in
classical mechanics {when being expressed as functions of
the actual x; (¢),p, (¢) ] , while, on the other side, the number
of additive ones usually does not exceed 10, it is quite appar-
ent that the former set is not empty. It is, however, both
difficult to extract them from the concretely given model
theories and, a fortiori, to characterize them by means of
more general principles. Some steps in this direction can,
e.g., be found in the classical book of Whittaker,'® the per-
haps most notable result in this direction being the theorem
of Bruns, viz., there are no other algebraic invariants of mo-
tion in celestial mechanics of three bodies than the already
known ones. [ Note that (i) in the case of two bodies there
does exist an additional one, namely the so-called Runge—
Lenz vector; and (ii) the emphasis lies on “algebraic,”
which implies that while additional invariants do exist they
are necessarily of a complicated (transcendental) type and
therefore difficult to find. ]

In quantum field theory the situation is (understand-
ably) less transparent, in particular concerning existence
and properties of objects corresponding to the nonadditive
scattering invariants of classical mechanics. A possibly anal-
ogous role might be played by multilocal conserved quanti-
ties (called charges in this field). These objects have been
found in some lower-dimensional models and in a recent
paper Buchholz, Lopuszanski, and Rabsztyn'’ (see also
Refs. 18 and 19) try to develop an approach allowing us to
systematically study them in the physical relevant dimen-
sion 4. It may be promising to try to relate these ideas with
our strategy, which is different, in the future.

Our approach, in contrast to most of the papers men-
tioned above, carries a distinctive differential topological fia-
vor. Its advantages are (in our view) that it allows us to
study these and more general questions on a considerably
broader scale and in a concise and unified manner, i.e., the
same methods work in classical mechanics, quantum theory,
and quantum field theory (QFT). Even in the much better
understood situation of additive invariants it sheds some
new light upon some of the perhaps more hidden aspects of
the problems under discussion.

To mention a few: (i) it does not need the existence of a
regime where particles scatter only elastically; (ii) the some-
what hidden but (in fact) for many conclusions crucial and
nontrivial assumption of the existence of certain suitable
open sets on the scattering manifold being coverable by real
scattering events is brought to light, leading, on the other
side, to a fine structure within the class of scattering invar-
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iants; and (iii) it might perhaps be easier to extend our ap-
proach to more complicated invariants in QFT having, e.g.,
a tensor (resp. spinor) character of a higher degree. This
represents still a major obstacle in extending the classical
Coleman-Mandula result to higher charges. Also (iv) since
neither the particle number nor the shape of the function ¥
has to be the same for in- (resp. out-) states, the approach
can be easily extended to objects (charges) which do not
commute with the S matrix! This topic and the extension to
general charges in quantum field theory will, however, be
given elsewhere.

The paper is organized as follows: In Sec. II we trans-
form the problem into a purely mathematical one thus dis-
playing what sort of treatment is actually the appropriate
one, what belongs to the physical input, and what is the
mathematical machinery. We then discuss in Sec. III in a
first step invariants depending only on the momenta of the
scattering partners and derive various structure theorems
for them as, e.g., every nonadditive invariant depending only
on the momenta is a function of overall energy and momen-
tum (in most cases even a polynomial). In Sec. IV we care-
fully analyze the physical side of the problem, in particular,
the structure of the set of in- and out-states being connecta-
ble by the scattering transformation. Section V deals with
the structure of invariants depending on the momenta, posi-
tions, and the time. The results are, however, less complete
and cover only the field of classical mechanics (in order not
to overburden the paper). It is exactly at this point where
future work has to set in. In the last section, which has more
the character of an appendix, we discuss an explicit counter-
example against the usual physical intuition, i.e., the poten-
tial V(r) ~r 2

il. THE MATHEMATICAL SIDE OF THE PROBLEM

We begin with the subclass of invariants depending only
on the momenta of the asymptotic particles. Furthermore,
we restrict ourselves, for the time being, to functions from
C '(R*"). It is not clear to us whether one really loses some-
thing by not considering more nasty functions in this special
context. In any case, by smearing with appropriate test func-
tions, one can usually extend the results to more general
invariants (if there are any) (see, e.g., Ref. 14).

This question is, however, not purely academic. Take,
e.g., one of the Cauchy equations over R:

Sx +y) =) +f). (2.1

Assuming f to be in C ' the construction of a solution is very
easy. We have

S x+y) =) =), f0)=£0) +,0),
(2.2)

from which
S(0) =0, f'(x)=const, (2.3)

follows. In a next step one usually tries to prove that possible
solutions lying in a more general class are automatically dif-
ferentiable. There is, for example, the result that a solution
being locally Lebesgue integrable is already € C'. On the
other hand there do exist nonmeasurable solutions(!) (cf.
the history of this equation given in Ref. 20, Chap. 14.2 orin

ie, f(x) =ax,
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Ref. 15).

Let p;, €;(p;), i = 1,...,n be the momenta and energies
of the asymptotic particles. Energy-momentum conserva-
tion then forces the ingoing and outgoing momenta to liein a
certain subset of R** X R*", i.e., we present the following de-
finition.

Definition 2: The scattering manifold M CR* X R in
momentum space is defined by the four constraints

‘Zpi—.zp,f:(),

i=1 i=1

(2.4)

h n

Z €(p;) — z € (p)) =0,

i=1 i=1
with p,eR?, €, (p,)eC’, away from possibly a certain set of
discrete points. The corresponding Jacobi matrix is assumed
to have rank 4, i.e., the constraints are assumed to be inde-
pendent. In more modern language,

ﬁ Rﬁn_)Rli,
(P1seesPrsP1 s eesPr)

~( PN ZEDWIHRAIAEDS (p{))

does not have 0cR* as a critical value. ( As to this notion cf.,
e.g., Ref. 20.)

Remarks: (i) In applications e(p) is usually € C *© away
from possibly p =0, e.g., €(p) =c-p?, p° +m?, etc.,
€(p) = ¢’ |p| may serve as an example for an €(p) note C 'in
p=0.

(ii) As to the assumed independence of the above four
constraints, one should say that this is the usual state of
affairs (e.g., for particles with nonzero mass). There exist,
however, even in physics, illuminating counterexamples. In
principle two situations can occur in general:

(a) rank f<4 at a point but is, nevertheless, locally

constant (the rank is locally lower continuous any-
way);

(2.5)

(2.6)
(B) rank f<4 but is locally nonconstant, i.e., it in-
creases (discontinuously) in every neighborhood

of that point.
In case (@) the situation is still relatively smooth. The codi-
mension of M is simply < 4. However, (£) is much more
singular. The codimension of M (which, in general, may
even no longer be a true submanifold of R™'") may increase
abruptly to values > 4 at some points s.t. the set A may turn
out to be much smaller than expected. This can also happen
in physics: Take, e.g., disintegration of a zero mass particle

into two others:

p=pi +p5, bl = |pi| + lp;| implying pi||p;.

That is, we get actually five constraints for the momenta p,,
p1.p5 from the four equations (2.4). The codimension of M
is now 5 instead of 4 (one of the typical phase space con-
straints in photon scattering). Stated differently, the map
(2.5) has O as a critical value and () applies. We assume
this phenomenon to be absent in the following.

As was already remarked in Ref. 14 the whole manifold
M is not usually accessible to concrete scattering experi-
ments. On the other hand this is an important point since

(2.7)

Manfred Requardt 1829



almost all the classical proofs relied Aeavily on this assump-
tion. Solutions of the equations of motion are usually given
uniquely by their initial conditions. But one has a certain
freedom in varying, e.g., the impact parameter while keeping
the ingoing momenta fixed, thereby varying the outgoing
momenta. These physical aspects of the problem will be dis-
cussed in detail in Sec. IV. So let us for the moment simply
assume that, while the whole M usually cannot be covered by
scattering events for a given fixed interaction between the
particles, there exists at least an open set UC M correspond-
ing to a concrete scattering situation. Thus we have the fol-
lowing definition.

Definition 3: A function F(p,,...,p, )eC '(R*") is called
an invariant of the scattering transformation of the first kind
iff for a certain open subset UC M we have the relation

F(p) —F(p')=0 for all (p,p)elU (2.8)

[with p, p’ standing for the n-tuples (py,....0, ), PisPr) ] -
This implies dim (U) = dim(M) = (6n — 4). The general
mathematical situation is, however, more involved. With
P':=3p!"”, E: = 3¢, (p{"”), M was defined as the inter-
section of the four hypersurfaces given by energy-momen-
tum conservation. If one looks for further conserved quanti-
ties, say F, what has to be usually expected is the relation
F(p) = F(p') to hold on M only on a submanifold of dimen-
sion <6n — 4 — 1, the intersection of the hypersurface given
by the additional conservation law with M. That is, we have
the following.

Definition 4: The function F, given in Definition 3, is
called an invariant of the second kind iff relation
F(p)=F(p") holds only a subset U’ C UCM of dimension
d<6-n—5.

Geometric observation: If the situation is the one de-
scribed in Definition 3 M is at least locally contained in the
hypersurface defined by F. Definition 4 describes the phe-
nomenon that this hypersurface hits M transversally, thus
reducing the dimension by at least 1 (as to more details con-
cerning these notions cf. Ref. 21.

Physical observation: Let M, CM denote the (physical)
submanifold which can be covered by real scattering experi-
ments. Under the assumption of Definition 3 dim(M),

= dim(M). Since the momenta of the ingoing particles can

always be freely chosen we have dim(M),>3n in general.
We show in Sec. IV that in the pure momentum case
dim(M), = dim(M). In thecase of more general invariants
this will, however, never hold! In that case, ie.,
dim(M), <dim (M), Definition 4 becomes relevant.

Whether there are such invariants of the second kind
requires a careful analysis of the physical scattering situation
and this will be given in Sec. IV. In any case there exists a
very useful structure theorem that allows us to discriminate
between these two possibilities. For its proof we need the
following simple lemma.

Lemma 1: Let feC ! be a function of an open neighbor-
hood U of OcR" X R¥, the coordinates denoted by (x;,...,x,,;
Y15--¥x )- The following is assumed to hold:

10N R*x {0}) =0.

Then £ can be written in a full open neighborhood U’ C U of
0eR" X R* in the form
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f= lglyi fis, f,€C  with respect to y. (2.9)
Proof:
flxy) =f(x,0)+ f %f(x,t-y)dr,
= é 7 '_[)lazy, fOnt-pydt. (2.10)

Let now Ube openon M s.t. F(p) = F(p') holds on U. Since
M is given by the relations

P—P'=0, E—E'=(,
with the corresponding Jacobi matrix having rank 4 on U,

we can choose local coordinates in an open neighborhood
UD U, U open in R*" X R*" We obtain

(X15esXn — 4V 15e--2a)
s.t. 2.11)
j”l: =Pl —P;,oo-’

Vi =Py —P;, J:=E(p)—E(p),
that s, with 7, a basis of local coordinates being normal to M.
With the help of Lemma 1 we can now prove the following
proposition.

Proposition 1: Let Ube open on M s.t. F(p) = F(p') on
U holds with F given in Definition 3. We have then in a
neighborhood IO U, T open in R**XR*, the representa-
tion

3
F(p) -F(p') = Z (P,—P})G;(pp")
=1

+(E(p) —E@P))Gy(pp') (2.12)

with G;,G,eC(R*XR*"), P, P', E(p), E(p') the overall mo-
mentum and energy of the ingoing and outgoing particles,
and P,, e.g., denoting the ith component of P.

Proof: U is diffeomorphic to a neighborhood of
0cR®" —*xXR* with §, =P, — P}, o =E—E' locally
spanning R*®. Here F(p) — F(p') corresponds to a certain
function F(%j) defined around OeR*~*XR* with
F|(TCR®~*x{0})=0 (since F is supposed to be con-
served on M). By Lemma 1 we see that F has a representa-
tion

F(25) = S 5 G(&) + Ju Gy(5).
Reinserting the original coordinates { pi,....0,:D},--D0}
proves the statement.

If we have the identity F(p) — F(p') only on a submani-
fold of smaller dimension than M itself the above local coor-
dinate system would be not exhaustive. The local coordinate
which is missing may just belong to a hidden independent
conservation law or to F itself. In any case, F(p) — F(p")
cannot be represented in the form (2.12) when this happens
to be the case.

Hll. A CONSTRUCTIVE DETERMINATION OF THE
FUNCTIONAL FORM OF (NON)ADDITIVE INVARIANTS
(PURE MOMENTUM CASE) '

This section contains the bulk of the technical aspects of
our approach together with a complete classification of gen-

(2.13)
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eral invariants depending only on the momenta. Invariants
depending also on the positions are treated in Sec. V. A cru-
cial role will be played by our structure theorem (2.12). We
will exploit the peculiar form of (2.12), i.e., that the Ihs is the
difference of two functions depending solely on either p or p’.
To that end we will differentiate both sides with respect to
Pispjs i j = 1,...,n, assuming, in order that the G;’s be eC L
that FeC? We then get

3, F(p) =G(pp) + (P, —P)3,G,(pp")
+ 8,6 (p,) Ga(pp)

+(E(p) —E(p")3,G.(pp), (3.1)

with G the vector with components G, v = 1,2,3, and an
analogous result for p;.

Choosing (p,p’) to lie a fortiori on M we have
(P, —P.)y=(E(p) —E(p")) =0, thatis

3,FP)|U=G(pp') + 39,6 ;) Gpp'),
8p;F(p’)§U= Gpp) + 89},@ (p))Gy(p.p').

The expressions (3.2) and the corresponding ones in the

more complicated situations dealt with in Sec. V will turn

out to be of particular use in calculating invariants. What we

have in fact achieved by using this simple trick is that the lhs

of (3.2) depends either solely on p or p’ while on the rhs there

are terms, G, G,, which are independent of the subscript i, 7 !
We proceed now as follows: In a first step we get

Gpp) = — 3, (p)-Gulpp') +3,F(p),
Gpp') = —3,€6p)) Galpp") +9,F(p")

which holds on UC M and for all 4, j. This expression can be
exploited in various ways. The lhs is completely independent
of the index i (resp. j). So, taking the derivative in the first
(second) expression with respect to p;,p; (p;,p; ), subtract-
ing the corresponding equations from each other and bring-
ing G, to the left-hand side we arrive at

G,(pp') =0 F(p) — 3. F(p))
X(a;;:}}fi w) - a,(,:)fj @~ '
Gi(pp') =@ F(p) — 3 PF ()
X0, € (p) — 3 e (pi) !
(no summation over ¥!), which holds on U where the super-
script v denotes the vth component of the gradient. Reinsert-
ing this into (3.3) we get a corresponding explicit expression
for G. We observe the remarkable fact that both the rhs of
(3.4) and after having inserted the lhs of (3.4) into (3.3) the
rhs of (3.3) depend either solely on p or p’ while G(p,p’),
G,{(p,p’) are, in principle, functions of both p and p’. This
will be exploited in the following way.
While away from the scattering manifold, M, G, G, are
expected to depend bothon p and p’, we see that on M, i.e.,

the subset of pairs (p,p’) which can be related via a scattering
process, we have

G, (pp)=G, (p)=G,(p),

G, (pp') = Gu(p) = G, (p").
But this is exactly the condition a scattering invariant has to

(3.2)

(3.3)

(3.4)

(3.5)

1831 J. Math. Phys., Vol. 28, No. 8, August 1987

fulfilll That is, we have the following theorem.

Theorem 1: With FeC? being a scattering invariant on
an open neighborhood Uon M, i.e., F(p) = F(p"), (p,p" )€U,
there exists a neighborhood UD U, open in R X R, s.t.

F(p) —F(p')=G" (P, —P})+ G*(E(p) — E(p")
holds on U,G*,G *eC ' with respect to (p,p’). Here G ¥ and

G * have the remarkable property that they are themselves
scattering invariants, i.e., we have

G4(p,p’) = Gd(p) = G4(p’)](p’p,)eM'

G pp) =G (p) =G (p)

Here G~ and G * are explicitly given on M by the expressions
(3.3) and (3.4).

Before we proceed to deal with the more complex situa-
tion we would like to discuss the special class of so-called
additive invariants.

Definition 5: An invariant, F(p), of the scattering trans-
formation is called additive iff

Fp)= 3 fi(p:).

i=1
In this particular case the relations (3.3) and (3.4) can be
readily exploited showing that G *and G *areon M functions
ofany of the couples (p;, p;) [resp. (p;,p; ) ],i#j, k #1. This
shows that, in fact G ¥ and G, cannot really depend on any of
these couples on M, that is, we have

(3.6)

G,=const, G”=const on M. (3.7)
By (3.2) we get

3y fip)=C, +3,6(p;)C, on M, (3.8)
which implies

fip) =C,p” + Cee; (p) + Cy, (3.9)

with C,, C, being independent of the index {i}. That is, we
have the following theorem.

Theorem 2: For an additive conserved quantity, F(p)
= 2, f:(p;), on UCM we have the relation (3.9), that s,

Fpy=C,- P + CyE(p) + C,, (3.10)

i.e., a superposition of momentum, energy, and a constant.
We want to come now to the main topic of this investigation,
i.e., the structure of nonadditive scattering invariants. This is
an extremely difficult subject matter and very little is known.
We mention in this context, e.g., the classical book of Whit-
taker,'® where, properly speaking, invariants of motion are
discussed and Ref. 17 in the case of QFT. The machinery
being developed in this chapter will turn out to be sophisti-
cated enough to give an exhaustive answer in the restricted
case of invariants depending only on the momenta. Many of
the calculational steps can, however, be carried over to in-
variants depending also on the positions of the particles and
the time but this will be a much more ambitious program
with partial answers being given in Sec. V.

We have the following theorem.

Theorem 3: (i) Under the same assumptions as in
Theorem 1 every scattering invariant depending only on the
momenta is a function of overall energy E and momentum P
provided that the map { p—d,e(p)} is a homeomorphism
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a.e.,ie.,
F(p,,...p,) =F(z &), Ep,) . (3.11)

(ii) Furthermore, if F is an m-particle observable with
feEC™and m<n,ie,

Fub) = 3 f @b,
then f'is at most a polynomial of mth order in the variables
D;s€; of the form (3.25).

Remarks: (i) Note that the result holds also in quantum
field theory for translationally covariant charges.

(ii) The crucial part is (i), i.e., (3.11). The idea that
also (ii) should hold (which is obvious for polynomials) was
inspired by an observation made in Ref. 15 in the special case
of relativistic three-particle scattering and a two-particle
scattering invariant. The assumption m < n is crucial for the
proof. This is, however, not a series drawback since in many
cases one can simply add more particles in order to make n
bigger than m for fixed given f(p,,....0,, ).

Proof: (i) As before we choose a special local coordinate
system in R 3", the first four local coordinates being Pand E,
the remaining 3n — 4 being denoted by &: = {£},....{5, - o
and consider F as a function of E,P,{. Employing Eq. (3.2)
we get (3. F: = (9, F,....0;, _ F), 0,8 = (3,§,,-))

apF+ aEF'aPIG(pi) + agF'apig

=G+ G, d,€(p;) for all i, (3.12)
O F-(0,€(p;) — 3,€(p;)) + I F- (3,6 —3,8)
= Gy'(3,€(p;) — 3,€(p))), (3.13)
implying
G,=3d.F+ a;F-{(ap,; — apjv $)
X (3,6 7:) — 3,6 (p))) "} (3.14)

or
(G4 —3gF) =E)§F-{-~} for all i#j, v=123.
If we can show that d, F = 0 for all a, we have shown
that F does depend only on E and P. For technical reasons we

will now choose an especially well-adapted local coordinate
system, i.e., in addition to P, E, we can take, e.g.,

$i:=P3resbin—st=Pn- (3.15)
The map: (py,..-,P, ) = (PyP,...,p, ) is a diffeomorphism. The
same holds for the map: (P,p,,...,0, ) — (E,Pp,...p} ) [with
E understood as the function €,(P~—p,—..—p,)

+ &(p;) + ... +€,(p,)] around points where Je,/dp}
#0., Since there is nothing special about the coordinate p) it
is enough to have de,/dp; #0 at some point and for some
index i in order that the following holds true in a neighbor-
hood of that point. '

In this new coordinate system the curly bracket of
(3.14) becomes particularly simple. Making the special
choicep} = pi,p; = p; we have (8,16 — 3,,8)=0and hence

Inserting this into (3.12) we get
9pF +0.F-3,6 =G for all i. (3.17)
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With i =1 we get d, { =0 (since { depends by definition
only on pZ,...). That is, we have by the same token
G =JdpF which implies 8,F-3,{ =0 on U for all
(3.18)
From this we can infer that 6P‘VF= 0 for 3(i — 1) + v>5,
that is, F' does not depend on { at all, in other words,
F(p,,...p,) = F(E,P). (3.19)

The proof of the second part of the theorem is almost
entirely a consequence of the structure formula (3.19), i.e,,
given (3.19) the statement is more or less independent of the
specific context under discussion. Let F(p,,...,p, ) have the
functional form

F(p,,....p,) = F(E,P) = z}{f.}(p,.l,...,p,.m), m<n,

S 2
(3.20)
with FeC™(R ™). From (3.20) we infer that

3#. . .3"::5'(5,}0) = 3,?;-' . .apZ,’." {f.}(Pi,,---,P.-,,,) (3.21)

holds for an arbitrary but fixed index set {7,,a;...;i,n @ }.

The following calculation can be done without difficulty
for an arbitrary m < n. But as there is the risk that the degree
of notational complexity obscures the basically simple idea
underlying the proof, we prefer to give the detailed calcula-
tion only for the case m = 2 and hope to convince the reader
that at every step of the reasoning one could replace the
number 2 by an arbitrary m. For m = 2 we have

ap?apfF(E’P)
= 0,20 4F(E,P) + 3g0,sF(:*-) 3 .€(p,)
+aE¢9P,,F("‘)'3pf€(pj) .
+ 3505F ) 0,60 3, p))
= ap?ai‘f {f.}(p"l’j)'

With 2 (and in general m) smaller than # we can vary E,
P while keeping p;,p; fixed! Doing this we see that because
the rhs of the second equality has to remain constant

0p0,F(E,P) = const,

(3.22)

dgdpF(--+) = const, (3.23)
8z F(--+) =const,
in other words,
F(E,P) =A,,P*P?+ B,E-P*
+ C-E-E + lin. terms + const., (3.24)

where now 4,5,B5,C,... are constants. For (f }(p,-,pj) we
have

L, @b =4 (PPf + PPl + pir? + pipf)

+ By (e + €] + €07 + €0
+ C(€ + 2¢.€; + €)
+ lin. terms + const.

This proves the theorem.

In concluding this section we want to give special em-
phasis to the following observation which can be extracted

(3.25)
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from the above proof.

Observation: G4|M = dgF, G|M = 3 F, which shows
(cf. Theorem 1 above) that G,, G are in fact invariants being
directly related to Fitself !

V. THE PHYSICAL SIDE OF THE PROBLEM

We have now to discuss the physical soundness of the
crucial assumption being made in connection with scattering
invariants of the first kind, namely that the possible scatter-
ing events are assumed to cover a full open neighborhood U
on M. We start again with the simplest case, two particle
scattering in momentum space. Assuming €e(p) = p’
(m=1), MCR'" is given by

prtp,—pi —p; =0, pl +p; —pi"—pi*=0,

i.e.,, M has dimension 8. The ingoing momenta p,, p, can be
freely chosen, which yields six degrees of freedom.

The two missing local coordinates on the manifold M

can be found as follows. The asymptotical kinematics is de-
scribed by (1— — )

x2(t) =p; -t +x°.
For a rotational symmetric pair potential scattering in the
center of mass system takes place in a fixed plane [ (x; — x,)
0y XX+ XX Xy) = (% —x,) L = (%, 4+ X) (%, XX,);
with X, 4+ x, = 0 we have (x, — x,) 'L = 0]. The outgoing
momenta p;,p; are then uniquely given (at least locally) for
given ingoing momenta p,, p, by fixing the relative position
at time zero, i.e.,

d:=[x,(0) —x,(0)| and &:=(x,(0) —x,(0))p,(0),

4.1)
where d is the distance and € is the “angle” between the
interacting particles at t = 0. These two paramenters can be
independently varied (at least for non-nasty potentials) via
the initial conditions (x9,x5). Then 4 and & can be used as
local coordinates on M spanning together with (p,,p,) a full
local coordinate system.

Thus we see that for two particle scattering and physi-
cally well-behaved potentials the preassumption of the exis-
tence of an open neighborhood U on M where concrete scat-
tering takes place seems to be sound. Similar reasoning can
be used for n > 2 particles in the case of a pure momentum
dependence. But note that in any case x},, x7, are related to
x9, x9 via the Moller transformation ), , which is in gen-
eral not simple. That means that the above reasoning, i.e.,
that by varying x§, x5 we can appropriately vary x} ,.x2, and
hence p{,p;, is physically plausible but not mathematically
proved. On the one side one can prove this for a large class of
potentials, on the other there may be potentials where this
does not hold, e.g., that by varying x7,x5 we get only a one-
dimensional set of (pj,p;) for fixed ingoing momenta
(py,p2) s.t. U would have a dimension smaller than M itself.
This is an interesting question which deserves a separate in-
vestigation.

The situation is completely different for more general
invariants, depending on momenta and positions. Within
the regime of classical nonrelativistic point mechanics there
are ten a priori conservation laws, i.e., besides energy mo-
mentum, L = 2, x,(¢) Xp; and center of mass .S = 3.5, (),
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S;(t) = m;x,;(t) — p,;-t. For the free motion this reduces to
3, m;x?. There are a couple of subtleties concerning the
structure of the manifold M in this general case which will be
discussed in the next chapter.

It will turn out that after certain modifications, M, de-
fined by the above-mentioned conservation laws, is a
(12n — 10)-dimensional set in R®* X R®". In contrast, how-
ever, to the pure momentum case, by fixing the initial condi-
tions of the ingoing particles the initial conditions of the
outgoing particles are uniquely given. That is, the manifold
of physical interest, M, ,» has only 6n dimensions, i.e., we have
the following lemma.

Lemma 2: M,,, the manifold given by the set of pairs in
R % R®": {x%; S(x°p) }, x° = (x9,....x9), etc., Sviewed as a
map: R®" - R®, is a true submanifold of the manifolds M
defined by the conservation laws. The dimensions are
6n < 12n — 10 for n>2. :

This shows that there is no chance to cover a full open
neighborhood UCM with real scattering processes for a
fixed given interaction potential. Before we discuss the possi-
ble consequences of this fact we would like to make an aside
about the use of cluster properties in this context.

Definition 6: We say the scattering transformation S,
(i.e., for n particles) clusters if the following holds: with
inf, |x, — x;| - oo for each position x;, we have

i

S (X P15eresX Py seesXnPn )

=S, _ 1 (xlpl"“!xi(,pi(,"":xnpn ) XS, (x,",Pi(, )s (4.2)

where

Sy(x,p,,) = (X[ p;) = (x;,p,)

That is, one can shift one of the ingoing particles to infinity
s.t. in the limit it is not scattered at all. As is well known this
cluster property is connected with the range of the interac-
tion. Long range potentials have to be treated by a modified
approach.

If we are in a situation where (4.2) holds we can proceed
as follows. Restricting ourselves for simplicity for the mo-
ment to additive invariants we simply proceed by induction
starting from n = 2. Assuming that for n = 2 we can, e.g.,
prove a certain structure of the collision invariants we treat
the case n = 3 by shifting |x3| (resp. |x{], xJ|) to «. Both
for the two particle cluster and for the remaining single par-
ticle one we can employ the already proved result. We get the
corresponding result for » = 3 by shifting particle (1) [resp.
(2), (3)] back from infinity to their original positions, thus
proceeding from an arbitrary n — 1 to n.

That is, in some cases one can reduce the analysis to the
slightly simpler case n = 2. But even in this case the dimen-
sions of M, M, differ by 2 as long as the interaction potential
is kept fixed. We will show in the next chapter that for colli-
sion invariants with F(s,p) — F(s',p") vanishing on U open
in M results similar to the previous ones can be proved
[s={s}={mx(t) — p,t} = {m;x3}] . On the other
hand, it can now happen that the manifold M, defined by F,
hits M transverally s.t.

M.NM contains no U open in M but

M, CM-NM locally. (4.3)
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This implies in particular that one cannot decide by analyz-
ing the scattering results whether Fis an invariant of the first
or second kind. As was argued after Definition 4, Sec. I, this
may have important consequences. If MMM has a lower
dimension than M there may existadditional hiddensymme-
tries being related to the corresponding transversal local co-
ordinates defining MMM, that is, symmetries that show
only up on M,. Whether M, can in particular support addi-
tional edditive invariants is then a subtle question which de-
pends on whether the detailed structure of M, and M. al-
lows for an embedding M, C M locally in this special case
(due to the assumed additivity M, is relatively “flat,” cf.
Ref. 14).

Remarks: As to the use of cluster propertles of the §
matrix in this context we would like to add the following
remark. Buchholz kindly informed us that the observation
that things become simpler if one exploits the spacelike clus-
ter properties of S was already made by the authors of Ref. 17
a couple of years ago without being published. It is an impor-
tant tool in their paper.!” Unfortunately we were not aware
of this fact. :

As a last point to mention, in the special case of additive
conservation laws, the as yet unpublished results of Ref. 15
may have a certain bearing on the discussion of this chapter.
By exploiting what we called above the relative “flatness” of
the manifold M. in the case of additive invariants one can
possibly prove various results without assuming that certain
sets on M are open.

V. THE CASE OF GENERAL COLLISION INVARIANTS

Discussion of the case of general invariants of the §
transformation, depending on positions, momenta, and the
time, needs more care. In a first step we have to define a
manifold M adapted to our purpose. Since Zx;(¢)Xp;
= 2x{Xp;, Zm;x,(t) — p;t = Zm,x{ for free paths we can
write the ten conservation laws in the following way:

Zpi - ZP;’ =0,
zei(pi)
zxi(t)XPi

25~ Y si) =0,

where ¢ #¢' in general and x; (¢) = x{ + p,/m;t.

Remark: To be concrete we discuss only the case of non-
relativistic point mechanics. In case of another type of me-
chanics the conservation of center of mass has to be ex-
pressed differently. But no step in our calculations depends
actually on the concrete form of the conservation law of cen-
ter of mass or of the functional dependence €(p).

It is a simple but important observation that the various
time dependencies of the quantities in (5.1) are only a pseu-
docomplication. In a first step we rewrite the angular mo-
mentum conservation law this way:

_zei(p;)=oa

(5.1)
— > x;(t")YXp; =0,

(5.2)

S s,()Xp; — 3 si(t") Xp; =0,
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sincep, X p; = 0. In a second step we consider the problem in
a new space, i.e., the space spanned by the {s;,s,p,p/}. We
forget about the time coordinatés ¢, ¢ ' and observe that (5.1),
(5.2) define a (12, — 10)-dimensional manifold M in
R X R®", spanned by the coordinates {s,p,;s;p;}.

Definition 7: M is defined by the relations

ZPi —zpi =0,
. Zei(pi) —Zfr(Pi') =0,
zsixl,i ‘ES;XP;‘_'O,

Ysi—3si=0

in RS X R®", coordinates: {s,,p;;s/p;}.

In a next step we show that collision invariants
F(x(t),p,t) are automatically functions of s, p

Lemma 3: A general collision invariant F (x(t) Dt)isa
function of s, p, that is F(x(¢), p, t) — F(s, p).

Proof: The proof is simple. We have

F(x(t);P;t) = F(xo,P,O) = F({x,‘ _pi/m,' 't},P)
= F(s,p) (5.3)
(identifying the functions for simplicity ). We can then prove
the following theorem.

Theorem 4: Let F({x, (¢),p,},t)€C be an invariant of
the first kind, i.e., F(s,p) — F(s',p') =0 on an open neigh-
borhood UCM, M defined by Definition 7, then it fulfills the
structural relation:

F(sp) — F(s'p")
= G”'( >pi— Zp.f)m
+6¢( T etw) - T aten)
Hv-( Y x(OXp, =Y xi(¢") Xp;)m
Kw(Zs,(t) —Zs;(t’))m,

with G*,G,.H, K, in general functions of 5,5',p,p". Equation
(5.4) holds on UD U,U open in R X R%".

Proof: Employing Lemma 3 the proof is analogous to the
one of Theorem 1. Note that x; (£) Xp, =s;(£) Xp; = 5; Xp;
for free paths.

If Fis only an invariant of the second kind, i.e., M NM
has no open neighborhood in M but Mz NM, contains an
open set in M,,, we would get the following theorem, in gen-
eral.

Theorem 5: With M, NM, containing an open neigh-
borhood U CM, we have the corresponding relation on
U> U, U open in R® X R*™:

F(s,p) — F(s',p")

(5.4)

= {rhs of (5.5)}+ Y a4, i=1,...,12n — 10 — 6n,
. -
(5.5)

with {a, } functions of {s, p, s',p'} and {4, } functions vanish-
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ing identically on /(>CMP.

Proof: Most of the proof goes through as above. We only
need the following additional lemma.

Lemma 4: Every submanifold of a manifold M is locally
cut out by independent functions, i.e., it is the zero set of,
e.g., {4,} in addition to the functions defining M itself.

Proof: See, e.g., Ref. 21.

Remark: The possible occurrence of the terms o, 4, will,
in general, destroy the simple structure given, e.g., in
Theorem 3. Note that 4; need not even have the form
F,(ps) —F(p's).

In the following we will restrict ourselves to invariants
of the first kind. We then proceed as in Sec. I1I. Assuming
again that Fis twice differentiable we begin with differentiat-
ing with respect tos; which turns out to be advantageous. We
then restrict again the result to UCM s.t. all the terms
(Zp; — Zp!),... vanish indentically. So we get

(c?:,F(p,s))(“)jUzevaﬁpf-H"-i-K“ (5.6)

and
(O, F =3, F) U = €, H> (P! — p)), (5.7)

where v, a, 3, denote the components of the various three-
vectors and with €., the totally antisymmetric three-ten-
sor. Note that H ¥ does not depend on the particular , j being
chosen. Now we differentiate with respect to p,,p;, and get

B F(p))P|U =GP +37€,(p)G*

+ €55 H" + K” (5.8)
and the analogous expression for the index { j}. Subtracting
the two expressions we get rid of G and can isolate G *. Asin
the pure momentum case we get explicit expressions for all
the unknown functions {G,,Gz,H,;,K,}. As in Theorem 1,
Sec. I1I, we see that all these functions are necessarily scat-
tering invariants on UCM!

In the special case of additive invariants we get more
detailed information. With F(p,s) = 2, f; (p,,s;) we get on
the lhs of (5.7):

35, fi (Pissi) — 8 f;(py»s;). (5.9)

By the same reasoning as in Theorem 2, Sec. III, we see that
the H, are constants [that is, by varying (i, ;) ]. Inserting
this into (5.6) we see that the K, are constants. We then
subtract the expressions (5.8) for the index i (resp.j) from
one another, employing H, = const, K, = const. We get by
the same token G, = const, G, = const. That is, we wind up
with the following theorem.

Theorem 6: Let F({ p,,s;}) be a general invariant of the
Jirst kind, and U be the corresponding neighborhood on the
scattering manifold M defined in Definition 7. Furthermore,
we assume I to be twice differentiable.

Then (i) F fulfills Eqs. (5.6)-(5.8) by which the un-
known functions {G,,G, .H,,K,} can be determined.

(ii) The {G,,G",H,,K,} are themselves scattering in-
variants on M, i.e.,

G,(ps,p's') = G,(ps) = G,(p's’) on UCM. (5.10)

(iii) In the case of an additive invariant, all these func-
tions are constant.
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We get

(v)
F(p,s) = Zfi(Pi»si) = GV'(EP.‘) + G4'(Zei(l’i)>

(v)
+ 8 (a0 xp)

)
+Kv'<2si(t)) +C, (5.11)
that is, every additive invariant of the first kind is a superpo-
sition of the ten conserved quantities already known.

We want to conclude this chapter with the following
theorem which is the analog to Theorem 3 in Sec. III in this
general case.

Theorem 7: Let F(p,s), an invariant of the first kind, be
twice differentiable, d,e(p)#0 a.e, then the following
holds.

(i) Fis already a function of overall energy, momentum,
angular momentum, center of mass, £,P,L,S, and we have,
in particular,

9, F=G* 9, F=G*, d}F=H", 9 F=K".

(ii) If F is an m-particle observable with m <n and
FeC™, then the F (resp. the corresponding /) are at most
polynomials of mth order in the variables {P,E,L?S"}
(resp. { p,€:i,li5; 1)

Proof: Take Egs. (5.6)-(5.8). Choose, as in the proof of
Theorem II1, a new local coordinate system with E,P,L.S
representing the first ten coordinates, £,, = p3, £, =53,

etc., view F as a function of these new coordinates, and insert
it into (5.6) and (5.8). We get

LF 4+ F€,,5p° + 0. FOSE =€,,50) H + K,
ORF + 0pF-35¢€,(p;) + 07 F-€,0557 + KP
=GP 40356 (p,) G*+ €557 H + K.

(5.12)

Choosing, in particular, s¥ =s;, s* =s3, pf =p|, P’ =pj,
we conclude with the help of expressions (5.7),...,

dyF=H", d3F=K", d,F=G", 3.,F=G*
(5.13)
which shows, as in Theorem III, that F'is already a function
of E,P,L,S! The second part of the theorem will be proved
exactly along the same lines as in the proof of Theorem III.

Summary and outlook: Since Sec. VI will supply us only
with an explicit example of an (even) additive invariant of
the second kind for a, however, very special potential, we
want to briefly sum up what we have shown above and where
future work has to set in.

(i) We have completely classified the scattering invar-
iants depending only on the momenta of the particles in
Theorem 3, viz., they are all functions of overall energy and
momentum. The same analysis applies to translation covar-
iant invariants in quantum theory and quantum field theory.

(ii) In the case of the more general invariants, depend-
ing also on the positions of the particles and the time, we
found that they can be grouped into two different classes.
For invariants of the first kind we could show again that they
are functions of, now, overall energy, momentum, angular
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momentum, and center of mass. The two classes are distin-
guished by a geometric property, viz., (1) My contains M
locally, or (2) M, intersects M transversally. Since
dim(Mz) = 12n — 1 > dim(M) = 12n — 10, both situa-
tions can occur. [In order not to overburden the text we
discussed the case (ii) only within the regime of classical
mechanics. ]

(iii) In case F is an m-particle invariant with m <n it
could even be shown that F is a polynomial of at most mth
order in E,P,L,S in situation (i). We think that the restric-
tion m < n is not superfluous since it might well occur for
some special n, that there are invariants depending on all n,
particles that cannot be embedded in spaces with n > n,! (A
possible example might be the Runge-Lenz vector. )

(iv) Future work has to deal with these invariants of the
second kind mentioned in (ii) (2). In that case the geometry
of the intersection of M and M needs a careful study. The
corresponding norlocal invariants in quantum field theory
that are not translation covariant are also studied elsewhere.
We would like to mention in this context that it may turn out
to be an advantage that our formalism is wide enough to
incorporate also charges not commuting with the .S matrix.
Objects like these may also exist in classical mechanics since
invariants of motion (i.e., commuting with H) do not(!)
necessarily commute with the S matrix. In that case more is
needed (somewhat sloppily: they should comute as well with
H, in the limit |¢ | - o ). Possibly some of the initial condi-
tions of classical mechanics are just of this kind.

VL. AN-EXAMPLE OF AN INVARIANT OF THE SECOND
KIND

It is obvious that the notion of an invariant of the second
kind is not purely academic. We will see that there exist even
additive examples of this type. On the other side; the struc-
ture of the manifolds M,,M, M. (F the invariant) and their
mutual intersections are not easy to visualize so that it is
quite helpful to get indirect evidence by means of, e.g.,
Theorem 6.

By Theorem 6 we know that every additive invariant F
s.t.

M. NOMDU (U open in M),

M,: = zero set of F(p,s) — F(p',s') in R*”XR®,

(6.1)
holds, in other words M being locally contained in M, is
necessarily of the form (5.12), that is, with constant coeffi-
cients G,.H,K,C. If for a certain given pair interaction V' we
can show that there is an additive invariant which is not of
the form (5.12) it is necessarily of the second kind, that is,

M, hits M transversally,
MFNM contains no open U but

M, CM, locally, where M,: = {(p,s);S(p,5)}. 6.2)
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Now take in the two-body case the potential to be
V(r) = C-r~2 One knows that the so-called time delay T'is
zero in this case. (For the definition of time delay cf,, e.g.,
Refs. 4 and 6, it can also be found implicitly in Chap. 14 of
Ref. 1. See also Appendix B in Ref. 14.) We have

T=(sp—sp)/p (6.3)

with s,p,..., taken in the center of mass system. Calculating 7"
by using the more explicit expression for 7" with the potential
in it (see the above references) we observe that T =0 for
V=cr3ie.,
$1°p1/my + 5,'p/m, is a scattering invariant on M,.
(6.4)

On the other side this invariant is not linearly expressible as a
superposition of P,E,S,L. So it is an explicit example for
which the preassumption of the existence of an open neigh-
borhood U on M, where F(s,p) = F(s',p’) holds, is not ful-
filled.
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